Искусственный интеллект что надо знать

0
6

Искусственный интеллект: что изучать, где учиться и кем работать

Что такое обработка естественного языка?

Глубокое обучение позволяет сделать еще один шаг вперед. Продолжая пример с птицами, глубокое обучение может научиться распознавать не только основные черты птиц, но и такие сложные детали, как узоры на перьях, что сделает его намного более точным в идентификации птиц и даже позволит отделить орлов от голубей.

ИИ способен произвести революцию в различных отраслях, позволяя машинам решать сложные задачи и мыслить интуитивно, выходя за рамки простой автоматизации. ИИ включает в себя различные области и технологии, такие как машинное обучение и обработка естественного языка.

Например, при обучении на непроверенных данных искусственный интеллект может копировать негативные предрассудки о расе, религии, воспитании и других характеристиках человека. Такие случаи могут стать потенциально опасными, если искусственный интеллект будет использоваться в здравоохранении, подборе персонала, юриспруденции и других сферах, ориентированных на человека.

В основе большинства программ в области искусственного интеллекта лежит изучение компьютерных технологий и математики. Студенты могут получить диплом по искусственному интеллекту или изучать этот предмет на программах со специализацией в информатике, графическом дизайне, информационных технологиях или инженерии.

Искусственный интеллект (Artificial Intelligence) – это наука создания интеллектуальных машин, в первую очередь интеллектуальных компьютерных программ, методов и связанных с ними технологий, помогающих выполнять задачи, которые требуют человеческого интеллекта.

Работа инженера по машинному обучению подходит для тех, у кого есть опыт изучения науки о данных, прикладных исследований и разработки программного обеспечения. Помимо знания искусственного интеллекта, важно знать математику, машинное обучение, нейронные сети, работу с облачными приложениями, программирование в Java, Python и Scala.

Например, в рамках базового машинного обучения компьютер может научиться распознавать птиц на фотографиях. Обучаясь на фотографиях птиц и других животных или предметов, машина учится различать их, знакомясь с уникальными птичьими особенностями, такими как крылья и клювы.

Искусственный интеллект, способный синтезировать, анализировать и действовать на основе огромных объемов данных за считанные секунды, является чрезвычайно мощным. Как и в случае с любой другой мощной технологией, очень важно ответственно подходить к ее внедрению, чтобы максимально использовать ее потенциал и при этом минимизировать негативные последствия.

Основы теории: Что такое искусственный интеллект?

По своей сути искусственный интеллект — это способность машины или компьютерной системы выполнять задачи, для которых обычно требуется человеческий интеллект. Это включает в себя программирование систем для анализа данных, обучения на основе опыта и принятия разумных решений — под руководством человека. Наиболее известной формой ИИ являются виртуальные помощники, такие как Siri или Alexa, но существует множество разновидностей данной технологии.

ЧИТАТЬ ТАКЖЕ:  Как сделать нейросети на видео

Рассматривайте ее как дорожную карту для разумного использования ИИ по мере развития данной технологии. Система управления ИИ представляет собой структурированный способ управления рисками и возможностями, связанными с ИИ. Она включает в себя такие ключевые компоненты, как прозрачность, объясняемость и автономность, давая организациям четкие указания по использованию ИИ в соответствии с развивающимися нормативными актами (например, Законом ЕС об ИИ).

Система управления ИИ — это своего рода «мозг», на котором строится работа организации с проектами ИИ. Речь идет об установлении правил и методов, обеспечивающих ответственное и эффективное использование ИИ. Такая система помогает управлять всем — от оценки рисков до ответственного применения ИИ.

Анализируя и интерпретируя язык, NLP позволяет компьютерам извлекать полезную информацию, отвечать на вопросы и вести беседу. Например, виртуальные помощники вроде Alexa могут понимать и предоставлять информацию о температуре на улице, заголовках новостей или среднем весе косатки.

Хотя это не всегда очевидно, искусственный интеллект уже давно стал неотъемлемой частью повседневной жизни миллионов людей. Виртуальные помощники, такие как Siri и Alexa, являются яркими примерами того, как искусственный интеллект может поддерживать человека в самых разных сферах — хотя бы тем, что делает жизнь более удобной.

Архитекторы программного обеспечения разрабатывают и поддерживают системы, инструменты, платформы и технические стандарты. ИИ-архитекторы делают это для технологий искусственного интеллекта. Они создают и поддерживают архитектуру ИИ, планируют и внедряют решения, создают набор инструментов и обеспечивают бесперебойный поток данных.

Технологии искусственного интеллекта быстро развиваются, поэтому способность быстро учиться и усваивать новые знания является одним из важных качеств, которые помогут вам добиться успеха в этой области. Даже опытные исследователи и инженеры должны постоянно совершенствовать свои навыки, чтобы идти в ногу с новыми технологиями. Для каждого работодателя ваша готовность быстро учиться и меняться будет важным плюсом.

Еще одна из ключевых этических проблем, связанных с ИИ, — это конфиденциальность. Поскольку системы искусственного интеллекта собирают огромные объемы данных из баз данных по всему миру, необходимо обеспечить защиту личной информации и ответственное ее использование. Например, технология распознавания лиц, часто используемая в системах безопасности или на платформах социальных сетей, вызывает вопросы о получении предварительного согласия и возможном неправомерном использовании.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь