Содержание статьи
Искусственный интеллект: между мифом и реальностью
Этические риски
С конца 1990-х годов ИИ стали объединять с робототехникой и интерфейсом «человек – машина» с целью создания интеллектуальных агентов, предполагающих наличие чувств и эмоций. Это привело, среди прочего, к появлению нового исследовательского направления – аффективных (или эмоциональных) вычислений (affective computing), направленных на анализ реакций субъекта, ощущающего эмоции, и их воспроизведение на машине, и позволило усовершенствовать диалоговые системы (чат-боты).
Ученые также прибегают к этим методам для определения функций биологических макромолекул, в частности белков и геномов, исходя из последовательности их компонентов – аминокислот для белков и оснований для геномов. В целом, во всех науках наблюдается серьезный эпистемологический разрыв, обусловленный качественным отличием экспериментов in silico – получивших такое название потому, что выполняются на основе больших данных с помощью мощных процессоров с кремниевыми чипами – от экспериментов in vivo (на живой ткани) и особенно in vitro (в стеклянных пробирках и чашках Петри).
Искусственные нейронные сети — это математические модели, обеспечивающие глубокое обучение. По своей сути они являются имитацией человеческого мозга. Состоящий из слоев взаимосвязанных узлов, называемых искусственными нейронами или перцептронами, каждый искусственный нейрон принимает входные данные, выполняет вычисления и генерирует выход. Затем полученные результаты передаются следующему слою перцептронов, создавая иерархическую структуру.
Как же работает машинное обучение? Оно начинается с данных. С большого количества данных. Алгоритмы машинного обучения обучаются на огромных массивах данных, которые они анализируют, чтобы выявить закономерности, взаимосвязи и тенденции. Затем такие закономерности можно использовать для прогнозирования или принятия решений на основе новых, еще не изученных данных.
Международные стандарты в области искусственного интеллекта представляют собой основу для ответственного и этичного использования технологий ИИ. Они охватывают такие области, как конфиденциальность, предвзятость, прозрачность и подотчетность. Придерживаясь подобных стандартов, организации могут обеспечить справедливость, прозрачность и соблюдение этических принципов в своих системах ИИ.
Преподаватель информатики в университете Сорбонна, профессор Жан-Габриэль Ганасия (Франция) является также научным сотрудником исследовательской лаборатории LIP6, (Laboratoire d’Informatique de Paris 6), действительным членом Европейской ассоциации искусственного интеллекта EurAI (European Association for Artificial Intelligence), членом Университетского института Франции (Institut Universitaire de France) и председателем Комитета по этике Национального научно-исследовательского центра Франции (CNRS). Его научные интересы охватывают такие темы, как машинное обучение, символическое слияние данных, компьютерная этика и цифровые гуманитарные науки.
Подпишитесь на нашу рассылку
Однако при ближайшем рассмотрении становится очевидно, что работа для людей не пропадает, а трансформируется, требуя новых навыков. Точно так же независимость человеческой личности и ее свобода не подвергаются неминуемой опасности из-за развития ИИ – при условии, однако, что мы останемся бдительными перед лицом вторжения технологий в частную жизнь.
ИИ подразумевает не только рациональный анализ и воспроизведение при помощи компьютеров большинства аспектов интеллекта – может быть, лишь за исключением юмора. Машины значительно превышают наши когнитивные способности в большинстве областей, что заставляет нас опасаться некоторых этических рисков. Это риски трех видов: дефицит работы, которая вместо людей будет выполняться машинами; последствия для независимости человека и, в частности, для его свободы и безопасности; опасения, что более «умные» машины будут доминировать над людьми и станут причиной гибели человечества.
По своей сути искусственный интеллект — это способность машины или компьютерной системы выполнять задачи, для которых обычно требуется человеческий интеллект. Это включает в себя программирование систем для анализа данных, обучения на основе опыта и принятия разумных решений — под руководством человека. Наиболее известной формой ИИ являются виртуальные помощники, такие как Siri или Alexa, но существует множество разновидностей данной технологии.
Самообучающиеся интеллектуальные системы широко применяются практически во всех сферах, особенно в промышленности, банковском деле, страховании, здравоохранении и обороне. Многие рутинные процессы теперь можно будет автоматизировать, что преобразит наши профессии и, в конечном итоге, устранит некоторые из них.
Рассматривайте ее как дорожную карту для разумного использования ИИ по мере развития данной технологии. Система управления ИИ представляет собой структурированный способ управления рисками и возможностями, связанными с ИИ. Она включает в себя такие ключевые компоненты, как прозрачность, объясняемость и автономность, давая организациям четкие указания по использованию ИИ в соответствии с развивающимися нормативными актами (например, Законом ЕС об ИИ).
ИИ способен произвести революцию в различных отраслях, позволяя машинам решать сложные задачи и мыслить интуитивно, выходя за рамки простой автоматизации. ИИ включает в себя различные области и технологии, такие как машинное обучение и обработка естественного языка.