Содержание статьи
Что такое нейронная сеть
Архитектура базовой нейронной сети
Нейронные сети прямого распространения обрабатывают данные в одном направлении, от входного узла к выходному узлу. Каждый узел одного слоя связан с каждым узлом следующего слоя. Нейронные сети прямого распространения используют процесс обратной связи для улучшения прогнозов с течением времени.
Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.
Принцип действия нейросети не похож на классическую программу. Такой сети не дают четкого алгоритма: ее обучают, чтобы она могла самостоятельно выполнять ту или иную задачу. В результате деятельность программы становится менее предсказуемой, но более вариативной и даже творческой.
Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.
С позиций сегодняшнего дня представляется, что нейросети вряд ли полностью заменят человека. Мы ожидаем от них помощи и новых решений задач, стоящих перед человечеством в целом и в конкретных сферах в частности. В будущем взаимодействие человека и нейросетей позволит решать многие глобальные проблемы и создавать условия для существования справедливого и процветающего общества.
В эпоху стремительного развития технологий нейросети занимают особое место, переворачивая представления о возможностях искусственного интеллекта. Взглянем на то, как работают эти удивительные системы и какие невероятные задачи они способны решить. Погружаемся в мир нейросетей и их потенциала!
Как устроена нейросеть
Структура. Нейросеть состоит из искусственных нейронов, которые соединяются между собой. У самой примитивной нейронной сети один слой нейронов, у более сложных — несколько. Часто каждый слой занимается своей задачей, например, один распознает, другой преобразует.
Нейронные сети могут отслеживать действия пользователей для разработки персонализированных рекомендаций. Они также могут анализировать все действия пользователей и обнаруживать новые продукты или услуги, которые интересуют конкретного потребителя. Например, стартап из Филадельфии Curalate помогает брендам конвертировать сообщения в социальных сетях в продажи. Бренды используют службу интеллектуальной маркировки продуктов (IPT) Curalate для автоматизации сбора и обработки контента пользователей социальных сетей. IPT использует нейронные сети для автоматического поиска и рекомендации продуктов, соответствующих активности пользователя в социальных сетях. Потребителям не нужно рыться в онлайн-каталогах, чтобы найти конкретный продукт по изображению в социальных сетях. Вместо этого они могут использовать автоматическую маркировку Curalate, чтобы с легкостью приобрести продукт.
Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.
Нейронная сеть – это метод в искусственном интеллекте (ИИ), который учит компьютеры обрабатывать данные таким же способом, как и человеческий мозг. Это тип процесса машинного обучения, называемый глубоким обучением, который использует взаимосвязанные узлы или нейроны в слоистой структуре, напоминающей человеческий мозг. Он создает адаптивную систему, с помощью которой компьютеры учатся на своих ошибках и постоянно совершенствуются. Таким образом, искусственные нейронные сети пытаются решать сложные задачи, такие как резюмирование документов или распознавание лиц, с более высокой точностью.
Глубокие нейронные сети или сети глубокого обучения имеют несколько скрытых слоев с миллионами связанных друг с другом искусственных нейронов. Число, называемое весом, указывает на связи одного узла с другими. Вес является положительным числом, если один узел возбуждает другой, или отрицательным, если один узел подавляет другой. Узлы с более высокими значениями веса имеют большее влияние на другие узлы.
Теоретически глубокие нейронные сети могут сопоставлять любой тип ввода с любым типом вывода. Однако стоит учитывать, что им требуется гораздо более сложное обучение, чем другим методам машинного обучения. Таким узлам нужны миллионы примеров обучающих данных, а не сотни или тысячи, как в случае с простыми сетями.
Нейросети состоят из «нейронов» (простых процессоров). Когда нейросеть обрабатывает какую-то информацию, сигналы проходят через нейроны и связи между ними. По мере обучения эти связи меняются, становятся более сильными или слабыми, что позволяет сети находить нужные решения.
Как же нейросеть «учится»? Вот один из вариантов обучения: если мы хотим научить сеть распознавать кошек на фотографиях, мы «показываем» ей много фотографий этих животных и фото, где их нет. Нейросеть «анализирует» эти фотографии и ищет уникальные особенности, которые отличают кошек от других объектов.
Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.
По какому принципу работают нейронные сети
Перцептроны — Это классические нейронные сети, изначально однослойные, позже многослойные. Сейчас используются в основном для вычислений. Сверточные нейронные сети — Это многослойные сети, которые состоят из чередующихся сверточных и субдискретизирующих слоев и предназначены специально для работы с изображениями. Рекуррентные нейронные сети Их особенность в возможности последовательно обрабатывать цепочки данных и «запоминать» предыдущую информацию. Поэтому их применяют для работы с изменяющимися сведениями или длинными цепочками данных, например рукописными текстами. Генеративные нейронные сети Предназначены для создания контента. Иногда используются генеративно-состязательные нейросети — связка из двух сетей, где одна создает контент, а другая оценивает его качество.
Скрытые слои в сверточных нейронных сетях выполняют определенные математические функции (например, суммирование или фильтрацию), называемые свертками. Они очень полезны для классификации изображений, поскольку могут извлекать из них соответствующие признаки, полезные для распознавания и классификации. Новую форму легче обрабатывать без потери функций, которые имеют решающее значение для правильного предположения. Каждый скрытый слой извлекает и обрабатывает различные характеристики изображения: границы, цвет и глубину.
При контролируемом обучении специалисты по работе с данными предлагают искусственным нейронным сетям помеченные наборы данных, которые заранее дают правильный ответ. Например, сеть глубокого обучения, обучающаяся распознаванию лиц, обрабатывает сотни тысяч изображений человеческих лиц с различными терминами, связанными с этническим происхождением, страной или эмоциями, описывающими каждое изображение.
Но по какой логике пересчитываются веса, понять можно. В ходе обучения нейросеть анализирует данные, а потом ей дают правильный ответ. Этот ответ для нее — числовое значение. Поэтому она подгоняет веса так, чтобы в своей работе сеть приближалась к эталонному значению. Мы подробнее расскажем об этом процессе ниже, когда поговорим про обучение.
Скрытые слои получают входные данные от входного слоя или других скрытых слоев. Искусственные нейронные сети могут иметь большое количество скрытых слоев. Каждый скрытый слой анализирует выходные данные предыдущего слоя, обрабатывает их и передает на следующий слой.
Вместо того, чтобы бояться замены, человечеству стоит продолжать пользоваться нейросетями как инструментами для развития и улучшения своих способностей. Взаимодействие человека и нейросетей в конечном итоге несомненно приведёт к синергии, которая откроет людям новые возможности и позволит улучшить качество их жизни.
Но разработки в этом направлении ведутся — правда, пока такие проекты находятся на стадии исследований. И даже с небольшим по сравнению с мозгом количеством нейронов нейросети могут достигать поразительных результатов в обучении. Некоторые даже проходят тест Тьюринга, но с оговоркой: сознания у них нет, просто они хорошо научились имитировать его наличие. Иногда даже человек не всегда способен распознать в своем собеседнике нейронную сеть.
Искусственный интеллект — это область компьютерных наук, которая исследует методы предоставления машинам возможности выполнять задачи, требующие человеческого интеллекта. Машинное обучение — это метод искусственного интеллекта, который дает компьютерам доступ к очень большим наборам данных для дальнейшего обучения. Программное обеспечение для машинного обучения находит шаблоны в существующих данных и применяет эти шаблоны к новым данным для принятия разумных решений. Глубокое обучение — это разновидность машинного обучения, в котором для обработки данных используются сети глубокого обучения.