Содержание статьи
Что за программа нейросеть
Где применяют нейросети и кто с ними работает
Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.
Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.
Структура. Нейросеть состоит из искусственных нейронов, которые соединяются между собой. У самой примитивной нейронной сети один слой нейронов, у более сложных — несколько. Часто каждый слой занимается своей задачей, например, один распознает, другой преобразует.
Но разработки в этом направлении ведутся — правда, пока такие проекты находятся на стадии исследований. И даже с небольшим по сравнению с мозгом количеством нейронов нейросети могут достигать поразительных результатов в обучении. Некоторые даже проходят тест Тьюринга, но с оговоркой: сознания у них нет, просто они хорошо научились имитировать его наличие. Иногда даже человек не всегда способен распознать в своем собеседнике нейронную сеть.
Например, специалист тренирует программу находить и удалять письма с фишинговыми ссылками. Он учит определять их по словам «выигрыш», «лотерея», «наследство». Но если вместо «выигрыш» мошенник использует слово «приз» или заменит символ, переобученная нейросеть не обратит на это внимание. Она будет работать по одному и тому же алгоритму, не обучаясь на других примерах.
Нейросети решают задачи, которые традиционно выполняет человеческий интеллект: распознают и генерируют изображения, понимают смысл письменной и устной речи, анализируют данные и строят прогнозы. Для обычной программы это слишком сложно, так как нет однозначного или полностью известного алгоритма, который приводит к результату.
Как устроена нейросеть
Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.
С другой стороны, как и человеческая цивилизация, нейросети постоянно совершенствуются — процесс обучения идет глобальными темпами. Есть вероятность, что значение нейронных сетей в мире возрастет многократно. Они будут принимать судьбоносные решения: экономические, судебные и политические.
Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.
В основе искусственной нейронной сети лежит устройство нервной ткани человека. Она состоит из нервных клеток, связанных между собой длинными отростками. В клетках происходят нервные импульсы, они передаются по отросткам в другие клетки. Таким образом нервная ткань обрабатывает или генерирует информацию. Сами импульсы очень сложно расшифровать: это не понятные человеку данные, а набор слабых электрических токов, которые нейроны воспринимают как информацию.
Нейронные сети — технология, которая позволяет отдать некоторые задачи умным программам. Это метод искусственного интеллекта, который обучает программы обрабатывать данные и выдавать на их основе нужные результаты. Бизнес использует технологию, чтобы анализировать информацию, создавать креативы и тексты и даже обслуживать клиентов. В статье расскажем, как компании применяют технологии машинного обучения и что нужно для работы с нейросетями.
Создавать голосовые помощники и чат-боты для работы с клиентами. Ответы голосового помощника Алисы формирует нейросеть YaLM, разработанная «Яндексом». «Мегафон» также создал на основе алгоритмов нейросети программу для обзвона клиентов , которую использует самостоятельно и продает другим компаниям.
Где используют нейросети
А вот с текстовым контентом всё сложнее. Мы пробовали собирать с помощью нейросетей темы для контента — и нет, пока нейросети собирают поверхностные, сырые темы. А ещё пробовали с помощью ChatGPT написать сценарий чат-бота. Эксперимент показал, что более-менее интересный вариант нейросеть выдаст только если человек максимально подробно опишет, что в тексте должно быть, но тогда гораздо проще самому текст и написать :).
Но по какой логике пересчитываются веса, понять можно. В ходе обучения нейросеть анализирует данные, а потом ей дают правильный ответ. Этот ответ для нее — числовое значение. Поэтому она подгоняет веса так, чтобы в своей работе сеть приближалась к эталонному значению. Мы подробнее расскажем об этом процессе ниже, когда поговорим про обучение.
Нейросеть — это программа, которую можно обучить на данных, чтобы решать разные задачи. Нейросеть работает по принципу нервной системы живого организма и состоит из слоев искусственных нейронов. Человек загружает информацию, программа пропускает ее через слои, пока не справится с задачей, которую ей поставили.
Пример. Если изображению собаки присвоено значение 0, а кошки — 1, может получиться итог 0,75. Это происходит так: программа разбивает изображение на отдельные элементы: усы, лапы, хвост, глаза. Затем нейросеть считывает данные и определяет, какому животному принадлежит каждый из них. Программа может посчитать, что усы, лапы, хвост, шерстный покров на картинке — кошачьи, а уши — собачьи. Система определит, что на изображении — кошка, но это будет вероятностный результат.
Искусственный интеллект, машинное обучение и нейросети — это не синонимы, но тесно связанные понятия. Искусственный интеллект — это область знаний, которая изучает и разрабатывает системы, имитирующие поведение человека. Она включает данные, программы и технологии. Машинное обучение — это способ формирования искусственного интеллекта. Нейросеть — это один из методов машинного обучения, в основе которого лежит математическая модель, имитирующая мозг.
В последние годы с развитием нейронных сетей их стали использовать в том числе в SMM. Уже сейчас есть блоги, где изображения и другой контент частично генерируются нейросетями. Применяют их и в развлекательных целях: различные сервисы «перерисовывают» лица людей, делают из них картины, персонажей мультфильмов, вставляют лица в отрывки из кино. Все это возможно благодаря машинному обучению и нейросетям.
Пример. Картинная галерея создает пост для соцсетей через ChatGPT. Нейросеть обучалась на массиве данных 2021 года, поэтому на запрос «попадают ли сгенерированные нейросетью картины на выставки» ответит отрицательно. Однако в 2022 году в Сан-Франциско открылась первая выставка полотен авторства нейросетей. Если SMM-специалист не проверит данные, он опубликует ложную информацию. Это может повлиять на имидж галереи.
Кроме того, есть входной и выходной слои. Входной принимает информацию и преобразовывает ее, например переводит картинку в матрицу из чисел. Выходной обрабатывает результат и представляет его в понятном человеку виде. Например, результат 0,77827273 он представит как «с точностью в 78% это такой-то предмет».