Что за нейросеть

0
21

Что за нейросеть

Что такое нейросеть?

Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.

Обучение нейронной сети — это процесс обучения нейронной сети выполнению задачи. Нейронные сети обучаются путем первичной обработки нескольких больших наборов размеченных или неразмеченных данных. На основе этих примеров сети могут более точно обрабатывать неизвестные входные данные.

При контролируемом обучении специалисты по работе с данными предлагают искусственным нейронным сетям помеченные наборы данных, которые заранее дают правильный ответ. Например, сеть глубокого обучения, обучающаяся распознаванию лиц, обрабатывает сотни тысяч изображений человеческих лиц с различными терминами, связанными с этническим происхождением, страной или эмоциями, описывающими каждое изображение.

Традиционные методы машинного обучения требуют участия человека, чтобы программное обеспечение работало должным образом. Специалист по работе с данными вручную определяет набор соответствующих функций, которые должно анализировать программное обеспечение. Это ограничение делает создание и управление программным обеспечением утомительным и трудозатратным процессом.

Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.

Нейросети у всех на слуху — сегодня о них не слышали разве что те, кто совсем не имеет доступа в Интернет. Более того, большинство из вас уже используют их в работе — генерируют картинки или текст по запросу. Активное использование таких сервисов не эквивалентно знанию принципов их работы — только единицы могут объяснить их устройство.

Распознавание речи

Скрытого — этот слой принято считать «сердцем» нейронной сети, ведь именно здесь происходит вся основная работа с данными. На скрытый слой они приходят из входного слоя или предыдущих скрытых слоев, если в нейросети их несколько. На каждом таком слое происходит дальнейший анализ информации предыдущего слоя, и далее — передача их на следующий слой;

С другой стороны, при глубоком обучении специалист по работе с данными предоставляет программному обеспечению только необработанные данные. Сеть глубокого обучения извлекает функции самостоятельно и обучается более независимо. Она может анализировать неструктурированные наборы данных (например, текстовые документы), определять приоритеты атрибутов данных и решать более сложные задачи.

Нейронные сети способны решать широкий пул запросов. При этом далеко не всегда возможно четко разграничить их по типу задач — запросы могут быть комбинированными, то есть для их решения необходимо выполнить более одного действия. Однако в общем виде классификация задач, которые успешно решают нейросети, может быть следующей:

Генеративные нейронные сети. Как можно понять из названия, главная задача этого подтипа — создание контента. Благодаря этому навыку данный тип нейросетей сегодня наиболее популярен: наверняка вы слышали или даже пользовались таким генератором картинок, как Midjourney, или пробовали создать текст с помощью ChatGPT.

Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая делает из фото рисунок

Искусственная нейронная сеть повторяет строение нервной ткани человека. Наш головной мозг состоит из миллиардов нервных клеток, соединенных между собой специальными отростками в сложную нейросеть с многочисленными связями. Работая, клетки посылают друг другу нервные импульсы, которые транспортируются по отросткам, как по проводам. Нейросети повторяют эти процессы — только теперь действие происходит не в голове, а в программе. Искусственные нейроны аналогично нервным клеткам хранят в себе информацию и способны обрабатывать данные, преобразовывать их и отправлять дальше по синапсам — связям внутри виртуальной сети.

Какими бывают нейросети

Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.

Впервые идею о сходстве работы мозга и компьютера, которая лежит в основе этой технологии, высказали еще в 1943 году двое американских ученых— Уоррен Маккаллок и Уолтер Питтс. Их доводы для тех лет казались революционными — ведь даже такого привычного для нас понятия, как «искусственный интеллект», тогда не существовало. Поэтому от первых разговоров об ИИ до реального обучения математических моделей прошло много десятилетий, и только работа с большими данными начала эру нейронных сетей. Сейчас мы проживаем настоящий бум развития ИИ-технологий, которые уже давно используются не только для решения математических задач, но и проникают в совсем не технологические сферы — медицину, искусство, развлечения.

Скрытые слои в сверточных нейронных сетях выполняют определенные математические функции (например, суммирование или фильтрацию), называемые свертками. Они очень полезны для классификации изображений, поскольку могут извлекать из них соответствующие признаки, полезные для распознавания и классификации. Новую форму легче обрабатывать без потери функций, которые имеют решающее значение для правильного предположения. Каждый скрытый слой извлекает и обрабатывает различные характеристики изображения: границы, цвет и глубину.

Принцип работы этой технологии заметно отличается от того, как функционируют компьютеры. Последние действуют строго в той области, которую написал для них человек, в то время как нейросеть сама выбирает способ решения вопроса на основе поступившей информации и прошлого опыта работы, в том числе допущенных ошибок. Что позволяет нейронным сетям одинаково успешно справляться с разными запросами? Постоянное обучение на уникальных задачах, и, как следствие, самостоятельное усовершенствование компьютерных алгоритмов работы. Благодаря способности дообучаться на новых входных данных, нейросеть умеет не просто распознавать и анализировать информацию в больших объемах, но и креативить — например, рисовать картины, создавать тексты или видео в разных стилях и формах, и даже общаться как человек. Быстрорастущие возможности ИИ-технологий сделали их незаменимым элементом многих систем и IT-продуктов: от простых чат-ботов до сложных и масштабных наукоемких решений.

Устройство и принцип работы нейронных сетей очень схожи с тем, как «думает» наш головной мозг. Однако не стоит переживать, что они выиграют интеллект в битве за первенство и уже в ближайшем будущем заменят человека. Даже самые сложные и передовые из существующих сейчас ИИ-программ не содержат такого количества нейронов, как человеческий мозг, да и их «мощность» заметно меньше.

Нейронными сетями называют специальные программы, которые работают с информацией аналогично человеческому мозгу. Их функционал схож с процессами, которые ежесекундно происходят у нас в голове: вычислительные элементы обмениваются информацией между собой аналогично нейронам головного мозга.Они, как и мозг человека, способны работать с гигантскими объемами данных в короткие сроки.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь