Что такое паддинг в нейросетях

0
15

Практики реализации нейронных сетей

Функция гиперболического тангенса

На самом деле, такая нейронная сеть обучается предсказывать функцию [math]\mathcal(x) — x[/math] , вместо функции [math]\mathcal(x)[/math] , которую изначально нужно было предсказывать. Для компенсации этой разницы и вводится это замыкающее соединение (англ. shortcut connection), которое добавляет недостающий [math]x[/math] к функции. Предположение авторов, которые предложили residual block, заключалось в том, что такую разностную функцию будет проще обучать, чем исходную. Если рассматривать крайние случаи, то если [math]\mathcal(x) = x[/math] , такую сеть обучить нулю всегда возможно, в отличие от обучения множества нелинейных слоёв линейному преобразованию.

Что касается использования сигмоидной функции, то ее преимущество над другими — в нормализации выходного значения. Иногда, это бывает крайне необходимо. К примеру, когда итоговое значение слоя должно представлять вероятность случайной величины. Кроме того, эту функцию удобно применять при решении задачи классификации, благодаря свойству «прижимания» к асимптотам.

Обычно, [math]tanh[/math] является предпочтительнее сигмоиды в случаях, когда нет необходимости в нормализации. Это происходит из-за того, что область определения данной функции активации центрирована относительно нуля, что снимает ограничение при подсчете градиента для перемещения в определенном направлении. Кроме того, производная гиперболического тангенса значительно выше вблизи нуля, давая большую амплитуду градиентному спуску, а следовательно и более быструю сходимость.

У данной функции есть один недостаток, называющийся проблемой умирающего ReLU [2] . Так как часть производной функции равна нулю, то и градиент для нее будет нулевым, а то это значит, что веса не будут изменяться во время спуска и нейронная сеть перестанет обучаться.

Свертка (англ. convolution) — операция над парой матриц [math]A[/math] (размера [math]n_x\times n_y[/math] ) и [math]B[/math] (размера [math]m_x \times m_y[/math] ), результатом которой является матрица [math]C = A * B[/math] размера [math](n_x-m_x+1)\times (n_y-m_y+1)[/math] . Каждый элемент результата вычисляется как скалярное произведение матрицы [math]B[/math] и некоторой подматрицы [math]A[/math] такого же размера (подматрица определяется положением элемента в результате). То есть, [math]C_ = \sum_^\sum_^A_B_[/math] . На Рисунке 1 можно видеть, как матрица [math]B[/math] «двигается» по матрице [math]A[/math] , и в каждом положении считается скалярное произведение матрицы [math]B[/math] и той части матрицы [math]A[/math] , на которую она сейчас наложена. Получившееся число записывается в соответствующий элемент результата.

В обычной нейронной сети явление переобучения появляется из-за так называемой совместной адаптации (англ. co-adaptation), то есть при обновлении весов нейрона, во время обучения методом обратного распространения ошибки, учитывается деятельность остальных нейронов с целью минимизировать функцию потерь. Поэтому веса нейронов могут меняться, исправляя при этом ошибки других нейронов. Метод дропаута как раз предотвращает эту адаптацию.

Rectified Linear Unit — это наиболее часто используемая функция активации при глубоком обучении. Данная функция возвращает 0, если принимает отрицательный аргумент, в случае же положительного аргумента, функция возвращает само число. То есть она может быть записана как [math]f(z)=max(0, z)[/math] . На первый взгляд может показаться, что она линейна и имеет те же проблемы что и линейная функция, но это не так и ее можно использовать в нейронных сетях с множеством слоев. Функция ReLU обладает несколькими преимущества перед сигмоидой и гиперболическим тангенсом:

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая поет голосами

Ступенчатая функция (англ. binary step function) является пороговой функцией активации. То есть если [math]z[/math] больше или меньше некоторого значения, то нейрон становится активированным. Такая функция отлично работает для бинарной классификации. Но она не работает, когда для классификации требуется большее число нейронов и количество возможных классов больше двух.

Свертка

Обратный дропаут (англ. inverted dropout) отличается от обычного тем, что умножение на коэффициент происходит на этапе обучения, причем этот коэффициент равен обратной вероятности того, что нейрон останется в сети: [math]\dfrac1[/math] . А на этапе тестирования выходное значение нейрона остается таким же, как и в методе обратного распространения ошибки.

Одной из проблем стандартного ReLU является затухающий, а именно нулевой, градиент при отрицательных значениях. При использовании обычного ReLU некоторые нейроны умирают, а отследить умирание нейронов не просто. Чтобы решить эту проблему иногда используется подход ReLU с «утечкой» (leak) — график функции активации на отрицательных значениях образует не горизонтальную прямую, а наклонную, с маленьким угловым коэффициентом (порядка 0,01). То есть она может быть записана как [math]\begin f(x) = \begin 0.01x, & \text\ x \lt 0 \\ x, & \text \\ \end \end[/math] . Такое небольшое отрицательное значение помогает добиться ненулевого градиента при отрицательных значениях. Однако, функция Leaky ReLU имеет некоторые недостатки:

Данная формула применяется на этапе обучения модели. Но так как на этом этапе нейрон остается в сети с вероятностью [math]q[/math] , на этапе тестирования необходимо эмулировать поведение нейронной сети, использованного при обучении. Для этого результат выходного значения функции активации умножается на коэффициент [math]q[/math] , то есть на этапе тестирования: [math]U_ = qa(\sum\limits^_ w_x_ + b)[/math] .

Рассмотрим нейрон, у которого взвешенная сумма входов: [math]z = \sum\limits_ w_x_ + b[/math] , где [math]w_[/math] и [math]x_[/math] — вес и входное значение [math]i[/math] -ого входа, а [math]b[/math] — смещение. Полученный результат передается в функцию активации, которая решает рассматривать этот нейрон как активированный, или его можно игнорировать.

Сверточный слой нейронной сети представляет из себя применение операции свертки к выходам с предыдущего слоя, где веса ядра свертки являются обучаемыми параметрами. Еще один обучаемый вес используется в качестве константного сдвига (англ. bias). При этом есть несколько важных деталей:

Сигмоидная функция (англ. sigmoid function), которую также называет логистической (англ. logistic function), является гладкой монотонно возрастающей нелинейной функцией: [math]\sigma(z) = \dfrac1>[/math] . И так как эта функция нелинейна, то ее можно использовать в нейронных сетях с множеством слоев, а также обучать эти сети методом обратного распространения ошибки. Сигмоида ограничена двумя горизонтальными асимптотами [math]y = 1[/math] и [math]y = 0[/math] , что дает нормализацию выходного значения каждого нейрона. Кроме того, для сигмоидной функции характерен гладкий градиент, который предотвращает «прыжки» при подсчете выходного значения. Помимо всего этого, у этой функции есть еще одно преимущество, для значений [math]x \gt 2[/math] и [math]x \lt -2[/math] , [math]y[/math] «прижимается» к одной из асимптот, что позволяет делать четкие предсказания классов.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь