Содержание статьи
Что такое нейросети в интернет
Архитектура глубокой нейронной сети
Глубокие нейронные сети или сети глубокого обучения имеют несколько скрытых слоев с миллионами связанных друг с другом искусственных нейронов. Число, называемое весом, указывает на связи одного узла с другими. Вес является положительным числом, если один узел возбуждает другой, или отрицательным, если один узел подавляет другой. Узлы с более высокими значениями веса имеют большее влияние на другие узлы.
Теоретически глубокие нейронные сети могут сопоставлять любой тип ввода с любым типом вывода. Однако стоит учитывать, что им требуется гораздо более сложное обучение, чем другим методам машинного обучения. Таким узлам нужны миллионы примеров обучающих данных, а не сотни или тысячи, как в случае с простыми сетями.
Но по какой логике пересчитываются веса, понять можно. В ходе обучения нейросеть анализирует данные, а потом ей дают правильный ответ. Этот ответ для нее — числовое значение. Поэтому она подгоняет веса так, чтобы в своей работе сеть приближалась к эталонному значению. Мы подробнее расскажем об этом процессе ниже, когда поговорим про обучение.
Скрытые слои в сверточных нейронных сетях выполняют определенные математические функции (например, суммирование или фильтрацию), называемые свертками. Они очень полезны для классификации изображений, поскольку могут извлекать из них соответствующие признаки, полезные для распознавания и классификации. Новую форму легче обрабатывать без потери функций, которые имеют решающее значение для правильного предположения. Каждый скрытый слой извлекает и обрабатывает различные характеристики изображения: границы, цвет и глубину.
Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.
Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.
Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.
Обучение не так просто, как кажется. В нейронных сетях есть эффект переобучения: если тренировочных сетов слишком много и они слишком разные, нейросеть «теряется» и перестает эффективно выделять признаки. В результате она может, например, воспринять артефакт графики как чье-то лицо или перепутать мужчину с женщиной. Это происходит из-за размытия весов. И это не единственная ошибка, просто самая известная.
С другой стороны, при глубоком обучении специалист по работе с данными предоставляет программному обеспечению только необработанные данные. Сеть глубокого обучения извлекает функции самостоятельно и обучается более независимо. Она может анализировать неструктурированные наборы данных (например, текстовые документы), определять приоритеты атрибутов данных и решать более сложные задачи.
Входной слой
Нейронные сети могут отслеживать действия пользователей для разработки персонализированных рекомендаций. Они также могут анализировать все действия пользователей и обнаруживать новые продукты или услуги, которые интересуют конкретного потребителя. Например, стартап из Филадельфии Curalate помогает брендам конвертировать сообщения в социальных сетях в продажи. Бренды используют службу интеллектуальной маркировки продуктов (IPT) Curalate для автоматизации сбора и обработки контента пользователей социальных сетей. IPT использует нейронные сети для автоматического поиска и рекомендации продуктов, соответствующих активности пользователя в социальных сетях. Потребителям не нужно рыться в онлайн-каталогах, чтобы найти конкретный продукт по изображению в социальных сетях. Вместо этого они могут использовать автоматическую маркировку Curalate, чтобы с легкостью приобрести продукт.
Обучение нейронной сети — это процесс обучения нейронной сети выполнению задачи. Нейронные сети обучаются путем первичной обработки нескольких больших наборов размеченных или неразмеченных данных. На основе этих примеров сети могут более точно обрабатывать неизвестные входные данные.
Искусственные нейронные сети постоянно обучаются, используя корректирующие циклы обратной связи для улучшения своей прогностической аналитики. Проще говоря, речь идет о данных, протекающих от входного узла к выходному узлу по множеству различных путей в нейронной сети. Правильным является только один путь, который сопоставляет входной узел с правильным выходным узлом. Чтобы найти этот путь, нейронная сеть использует петлю обратной связи, которая работает следующим образом:
Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.
Нейронная сеть – это метод в искусственном интеллекте (ИИ), который учит компьютеры обрабатывать данные таким же способом, как и человеческий мозг. Это тип процесса машинного обучения, называемый глубоким обучением, который использует взаимосвязанные узлы или нейроны в слоистой структуре, напоминающей человеческий мозг. Он создает адаптивную систему, с помощью которой компьютеры учатся на своих ошибках и постоянно совершенствуются. Таким образом, искусственные нейронные сети пытаются решать сложные задачи, такие как резюмирование документов или распознавание лиц, с более высокой точностью.
Перцептроны — Это классические нейронные сети, изначально однослойные, позже многослойные. Сейчас используются в основном для вычислений. Сверточные нейронные сети — Это многослойные сети, которые состоят из чередующихся сверточных и субдискретизирующих слоев и предназначены специально для работы с изображениями. Рекуррентные нейронные сети Их особенность в возможности последовательно обрабатывать цепочки данных и «запоминать» предыдущую информацию. Поэтому их применяют для работы с изменяющимися сведениями или длинными цепочками данных, например рукописными текстами. Генеративные нейронные сети Предназначены для создания контента. Иногда используются генеративно-состязательные нейросети — связка из двух сетей, где одна создает контент, а другая оценивает его качество.
Архитектура нейронных сетей повторяет структуру человеческого мозга. Клетки человеческого мозга, называемые нейронами, образуют сложную сеть с высокой степенью взаимосвязи и посылают друг другу электрические сигналы, помогая людям обрабатывать информацию. Точно так же искусственная нейронная сеть состоит из искусственных нейронов, которые взаимодействуют для решения проблем. Искусственные нейроны — это программные модули, называемые узлами, а искусственные нейронные сети — это программы или алгоритмы, которые используют вычислительные системы для выполнения математических вычислений.
Машинное зрение — это способность компьютеров извлекать информацию и смысл из изображений и видео. С помощью нейронных сетей компьютеры могут различать и распознавать изображения так, как это делают люди. Машинное зрение применяется в нескольких областях, например: