Содержание статьи
- 1Что такое нейросети, принципы работы и как их использовать в интернет-торговле
- 1.1Трудности при работе с нейросетями
- 1.2Интересно то, что конкретные признаки, нужные для узнавания, неизвестны. Мы не можем точно сказать, почему понимаем, что кот — это кот, даже если он нарисован в необычном стиле и не похож на настоящего. У нейросетей так же. Разработчики до конца не знают, какие именно признаки «запомнила» нейросеть, — поэтому даже работающий и протестированный программный продукт может выдавать ошибки. Например, воспринимать человека с ободком в виде кошачьих ушек как кота.
- 1.3Какими бывают нейросети
Что такое нейросети, принципы работы и как их использовать в интернет-торговле
Трудности при работе с нейросетями
В медицине нейронные сети используются для анализа медицинских изображений, диагностики заболеваний и разработки индивидуальных терапевтических схем. Они способны обрабатывать огромные объемы данных и выявлять скрытые закономерности, что помогает врачам принимать более точные решения.
Нейросети перерабатывают терабайты данных и со временем выполняют поставленные задачи всё лучше. Раз за разом предлагая анализировать, генерировать и прогнозировать информацию по запросу, пользователь может обучить сеть выдавать нужный результат с наименьшими затратами времени.
– конкуренция с людьми за рабочие места. В тех случаях, когда квалификация специалиста не особенно важна, сети могут заменить человека. Под удар попадают копирайтеры, иллюстраторы, дизайнеры, программисты. Это не значит, что у людей есть повод для паники, скорее это причина для профессионального роста и развития. Но повод, чтобы задуматься, серьёзный;
Кроме того, есть входной и выходной слои. Входной принимает информацию и преобразовывает ее, например переводит картинку в матрицу из чисел. Выходной обрабатывает результат и представляет его в понятном человеку виде. Например, результат 0,77827273 он представит как «с точностью в 78% это такой-то предмет».
В основе искусственной нейронной сети лежит устройство нервной ткани человека. Она состоит из нервных клеток, связанных между собой длинными отростками. В клетках происходят нервные импульсы, они передаются по отросткам в другие клетки. Таким образом нервная ткань обрабатывает или генерирует информацию. Сами импульсы очень сложно расшифровать: это не понятные человеку данные, а набор слабых электрических токов, которые нейроны воспринимают как информацию.
Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.
Интересно то, что конкретные признаки, нужные для узнавания, неизвестны. Мы не можем точно сказать, почему понимаем, что кот — это кот, даже если он нарисован в необычном стиле и не похож на настоящего. У нейросетей так же. Разработчики до конца не знают, какие именно признаки «запомнила» нейросеть, — поэтому даже работающий и протестированный программный продукт может выдавать ошибки. Например, воспринимать человека с ободком в виде кошачьих ушек как кота.
В финансовой сфере нейросети применяются для прогнозирования финансовых рынков, определения рисков и борьбы с мошенничеством. Они анализируют огромные объемы данных и помогают финансовым аналитикам и трейдерам принимать более обоснованные инвестиционные решения.
Разберём работу нейросетей на примере популярной Kandinsky 3.0 от Сбера. Для обучения и генерации конечного результата эта сеть перерабатывает огромное количество текстовых данных и изображений. Это позволяет ей создавать красивые картинки на основе заданных параметров. Вот в чём состоит принцип действия:
– по направлению распространения информации можно выделить сети прямого распространения и рекуррентные. Прямые чаще применяются для распознавания образов, кластеризации и классификации информации. Они не могут перенаправлять данные и работают в одну сторону — ввели запрос и сразу получили ответ. Рекуррентные сети «гоняют» информацию туда и обратно, пока не появится конкретный результат. За счёт эффекта кратковременного запоминания они дополняют и восстанавливают информацию. Такие сети очень востребованы в прогнозировании;
Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.
Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.
Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.
Какими бывают нейросети
Но разработки в этом направлении ведутся — правда, пока такие проекты находятся на стадии исследований. И даже с небольшим по сравнению с мозгом количеством нейронов нейросети могут достигать поразительных результатов в обучении. Некоторые даже проходят тест Тьюринга, но с оговоркой: сознания у них нет, просто они хорошо научились имитировать его наличие. Иногда даже человек не всегда способен распознать в своем собеседнике нейронную сеть.
Перцептроны — Это классические нейронные сети, изначально однослойные, позже многослойные. Сейчас используются в основном для вычислений. Сверточные нейронные сети — Это многослойные сети, которые состоят из чередующихся сверточных и субдискретизирующих слоев и предназначены специально для работы с изображениями. Рекуррентные нейронные сети Их особенность в возможности последовательно обрабатывать цепочки данных и «запоминать» предыдущую информацию. Поэтому их применяют для работы с изменяющимися сведениями или длинными цепочками данных, например рукописными текстами. Генеративные нейронные сети Предназначены для создания контента. Иногда используются генеративно-состязательные нейросети — связка из двух сетей, где одна создает контент, а другая оценивает его качество.
В 2024 году тот, кто приручил нейросеть — уже как минимум на шаг опередил конкурентов. Ведь нейронные сети существенно упрощают работу и ускоряют бизнес-процессы. Что же такое нейросети, какую пользу они могут принести бизнесу, в чём отличие нейросети от искусственного интеллекта — это и многое другое вы найдёте в нашей статье. В конце материала вас ждёт список нейросетей, которые упростят работу на маркетплейсах.
Нейросеть повторяет этот же принцип, но программно. Нейроны — это программные объекты, внутри которых хранится какая-то формула. Они соединены синапсами — связями, у которых есть веса: некоторые числовые значения. Веса отражают накопленную нейросетью информацию, но сами по себе, в отрыве от сети, не несут информационной ценности.
Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.
Чтобы бизнесу обрести помощника в виде нейросети, нужно разобраться, что это. Предположим, что человеческий мозг — это компьютер. Он содержит огромное количество «проводов» и «переключателей», которые соединяют различные части и помогают думать и запоминать. Эти «провода» и «переключатели» — нейроны. Во время мыслительного процесса и запоминания эти нейроны соединяются по-новому, за счёт чего происходит запоминание и обучение.
Инновации в области нейросетей продолжают расширять горизонты и создавать новые возможности во многих сферах деятельности. С ростом вычислительной мощности и доступности данных можно ожидать еще большего внедрения и усовершенствования нейронных сетей, что будет способствовать улучшению производительности, качества и эффективности в различных областях.
Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.