Что такое нейросети и для чего они нужны

0
27

Что такое нейросеть простым языком и с примерами

Как обучают нейросети

При глубоком обучении специалист по работе с данными предоставляет нейросети только необработанные данные, а та самостоятельно извлекает функции и обучается независимо. Если результат неудовлетворительный, то цикл обучения повторяется снова, пока нейросеть не будет давать корректные ответы.

Представьте себе стадион с тысячами зрителей. Вы и ваш собеседник сидите на сцене и разговариваете, в то время как слышна громкая музыка, люди разговаривают, веселятся и поют. Ваши уши воспринимают много ненужного шума, но мозг фильтрует его и воспринимает только то, что говорит ваш собеседник. Нейронные сети могут делать нечто подобное — после обучения они могут обрабатывать только те данные, которые им нужны, игнорируя ненужный шум.

При обучении нейронной сети все ее «веса» изначально задаются случайными значениями. Обучающие данные подаются на нижний, или входной, слой. Затем они проходят через последующие слои, пока не достигают выходного. Во время обучения «веса» и пороговые значения постоянно корректируются до тех пор, пока данные обучения не будут постоянно давать одинаковые результаты.

Идею нейронных сетей впервые предложили исследователи из Чикагского университета Уоррен Маккалоу и Уолтер Питтс в 1944 году. Первую обучаемую нейросеть в 1957 году продемонстрировал психолог Корнеллского университета Фрэнк Розенблатт. Она была примитивной (одноуровневой).

Они используются для генерации текста, распознавания голоса и перевода. Имеют циклы, и их основной характеристикой является включение памяти. Модель передает данные вперед и назад на предыдущие этапы для достижения оптимального результата. Слои повторяются по мере циклической передачи и хранения данных, поэтому сеть может запомнить все данные. Это помогает модели понять контекст входных данных и уточнить прогнозы выходных данных.

Нейросети распространены повсеместно. Мы все знакомы с системой просмотра улиц от Google или Яндекс.Карт, где размытые лица и номера машин — результат работы таких сетей. Нейронные сети также используются в технологии распознавания голоса. Развлекательные проекты, использующие нейронные сети, в изобилии представлены в Интернете: MSQRD, который накладывает различные маски на лица в режиме реального времени; Mlvch, который обрабатывает фотографии через нейросеть, — являются примерами таких проектов.

Эта нейронная сеть работает только на английском языке и выдает множество вариантов логотипов. Начните с ввода названия вашей компании, сферы деятельности и указания логотипов и цветов, которые вы предпочитаете. Наконец, вы можете изменить выбранный вами логотип.

Однако возрождение интереса к нейронным сетям и революция в глубоком обучении произошли лишь в последние годы благодаря индустрии компьютерных игр. Современные игры требуют сложных вычислений для обработки большого числа операций. В итоге производители начали выпускать графические процессоры (GPU), которые объединяют тысячи относительно простых вычислительных ядер на одном чипе. Исследователи вскоре поняли, что архитектура графического процессора очень похожа на архитектуру нейросети.

ЧИТАТЬ ТАКЖЕ:  Программист искусственного интеллекта где учиться

Dream– рисует абстрактные изображения

Нейросеть выдает фотографию несуществующего человека, которую можно использовать без всяких опасений. Алгоритм работает через генеративно-состязательную сеть — нейронную сеть, состоящую из двух частей: одна создает выходные данные, а другая проверяет их и пытается классифицировать точные от неточных. Таким образом, одна нейронная сеть создает изображение, а другая следит за тем, чтобы оно было достоверным.

Глубокие нейронные сети отличаются тем, что искусственные нейроны в них связаны друг с другом, а каждой такой связи присваивается определенный вес, который отражает ее значимость. Кроме того, связь между нейронами может быть «упреждающей». Это означает, что данные проходят через них только в одном направлении. Такое происходит, если значение «веса» соединения ниже заданного.

Организация данных в категории — наиболее частое применение нейронных сетей. В качестве примера можно привести решение о том, кому из группы людей выдать кредит, на основе анализа их личной информации, такой как возраст, финансовое положение и кредитная история. Нейронные сети используются для таких сложных вычислений, подобно человеческому мозгу.

Это может понадобиться при добавлении отзыва на сайт, когда изображения пользователя нет. Использование стокового изображения может быть альтернативой, однако читатель может уже видеть это изображение, что может подорвать доверие к отзыву. Фотографирование реальных людей без разрешения также не является подходящим решением.

Эти «веса» помогают определить важность той или иной переменной во входных данных. При прохождении каждого слоя входные данные умножаются на их «веса», а затем суммируются. Если получившееся значение выше заданного порога, то нейрон активируется и передает данные на следующий уровень.

Используются для распознавания изображений, видео, объектов и лиц. В отличие от трехслойной системы типичной нейронной сети, она имеет пять слоев: входной, сверточный, объединяющий, связанный и выходной. Такая конструкция позволяет получить стабильный результат даже при изменении масштаба и угла наклона изображения. Каждый слой исследует определенный аспект изображения, а затем соединяет всю информацию вместе на выходе.

Специалист по нейросетям должен быть знаком с передовыми методами разработки программного обеспечения, особенно с теми, которые касаются проектирования системы, контроля версий, тестирования и анализа требований. Также ему потребуются знания в области Data Science, такие как моделирование данных, оценка алгоритмов и моделей прогнозирования. Наконец, для презентации работы нейросети потребуется пользоваться технологиями пользовательского интерфейса, использовать диаграммы или визуализации.

В последние годы нейронные сети прошли путь от простых сортировщиков картинок на смартфонах до помощников в решении глобальных задач в науке. Современные нейросети способны заменить или дополнить работу человека во всех случаях, когда решение нужно принимать на основе предыдущего опыта. «РБК Тренды» разбирался, как устроены и работают нейросети, как их обучают и в каких сферах применяют.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь