Что такое нейросеть и как она работает
Что будет дальше
Свёрточные. Берут на себя всю работу с картинками: распознавание, генерацию, обработку, удаление фона — всё что угодно. За это в них отвечают два алгоритма: свёртка и пулинг. Первый делает послойную нарезку картинки, а второй — находит и кодирует на этих слоях самые важные признаки.
Многослойные. Сразу после выхода у перцептрона обнаружилась проблема — ему было сложно распознавать объекты в нестандартных условиях. Чтобы это обойти, придумали многослойную модель — она умеет выделять абстрактные сложные признаки из объектов и решать задачи более гибко. Например, она может распознать объект вне зависимости от освещения и угла наклона.
Нейросеть — это компьютерная система, которая имитирует работу нейронов в мозге человека. Она состоит из множества «нейронов», соединённых между собой и передающих информацию по цепочке. Нейросети используются во многих сферах для решения различных задач, в том числе для распознавания образов, обработки речи и прочего.
За более сложную детализацию отвечает метод стабильной диффузии. Это когда картинка сначала превращается в пиксельный шум, а потом воскресает из него с новыми деталями. Чтобы нейронка могла творить такое колдовство, её научили предсказывать, какие пиксели должны быть на месте размытых.
А чтобы научить нейросеть думать более гибко, создатели стали давать ей неправильные пары картинок. И со временем она научилась определять силу связи между разными предметами — похожими и не очень. Это позволило нейросети запомнить множество разных способов решения задачи.
Например, чтобы научить нейронку внутри Midjourney сопоставлять текст с картинками, ей «скормили» огромный массив изображений с подписями. С одного конца нейросеть получала текст, а с другого — картинку. А потом училась определять, что на фото: человек, водолазка или садовый шланг.
Виды нейронных сетей
Перцептроны. Первая модель, которую удалось запустить на вычислительной машине — нейрокомпьютере «Марк I». Её разработал ещё в 1958 году учёный Фрэнк Розенблатт — он заложил некоторые принципы, которые потом переняли более сложные модели. Так, несмотря на однослойную структуру, перцептрон уже умел настраивать веса и примитивно корректировать ошибку.
Чтобы бизнесу обрести помощника в виде нейросети, нужно разобраться, что это. Предположим, что человеческий мозг — это компьютер. Он содержит огромное количество «проводов» и «переключателей», которые соединяют различные части и помогают думать и запоминать. Эти «провода» и «переключатели» — нейроны. Во время мыслительного процесса и запоминания эти нейроны соединяются по-новому, за счёт чего происходит запоминание и обучение.
Рекуррентные. Нейросети, заточенные на работу с последовательностями — текстом, речью, аудио или видео. Идея в том, что они помнят всю цепочку данных, могут понимать её смысл и предсказывать, что будет дальше. Например, эту модель используют Google Translate и «Алиса», чтобы генерировать связный текст.
Уже сейчас понятно, что нейронки будут брать на себя всё больше задач, раньше считавшихся человеческими. Вопрос только в том, разовьются ли они настолько, чтобы полностью заменить собой часть профессий или останутся на уровне помощников — этаких творческих калькуляторов.
Нейросеть — это программа, которая умеет обучаться на основе данных и примеров. То есть она не работает по готовым правилам и алгоритмам, а пишет их сама во время обучения. Если показать ей миллион фотографий котов, она научится узнавать их в любых условиях, позах и костюмах.
«ChatGPT от OpenAI, Bard от Google, Sydney от Microsoft — показательные примеры машинного обучения. Они, грубо говоря, берут огромные объёмы данных, ищут в них паттерны и становятся всё более искусными в генерации статистически вероятных результатов — таких, которые кажутся подобными человеческому языку и мышлению».