Содержание статьи
Биологические нейронные сети
Принципы работы нейросетей
1. Прямого распространения, при которой входной нейрон, получивший первичный сигнал (или группа таких однотипных «клеток»), направляет сигнал другим нейронам с конечной целью довести его до выходного и при этом не получает от выходного обратный сигнал.
Его суть — в наделении компьютера способностью детально распознавать изображения (видео) с камеры или экрана, чтобы затем использовать результат такого распознавания в практически значимых целях. Например, обеспечить автономное управление автомобилем. Нейросети в этом случае могут анализировать дорожную обстановку на основе получаемого видеоконтента, а затем передавать контроллерам на автомобилях сигналы для осуществления необходимых маневров.
Биологические нейронные сети — (иногда называются нейронными путями) [2] представляют собой ряд взаимосвязанных нейронов, чья активность определяет узнаваемый линейный путь. Интерфейс, через который нейроны взаимодействуют со своими соседями, как правило, состоит из нескольких аксонов, связанных с помощью синапсов в дендритах других нейронов. Если сумма входных сигналов нейрона в одном превосходит определенный порог [3] , нейрон передает через потенциал действия [4] (AP) на холмик аксонов и передает этот электрический сигнал вдоль аксона. В противоположность этому, нейронная схема это функциональный объект, соединенных между собой нейронов, который способен регулировать собственную активность, используя контур обратной связи [5] (по аналогии с контуром управления в кибернетике). Биологические нейронные сети вдохновили дизайн искусственных нейронных сетей [6] .
Оппонентно выделенные самые яркие сигналы видимых лучей света S,M,L — RGB (не в цвете), сфокусированных предметных точек на экстерорецепторы колбочки сетчатки глаза (рецепторный уровень), по зрительным нервам пересылаются сюда, в зрительную кору. Здесь формируется бинокулярное (стерео) цветное оптическое изображение (нейронный уровень). Впервые, субъективно мы ощущаем цвет, который является лично нашим. (При определении цвета методом колориметрии цвет оценивается данными среднестатистического наблюдателя большой группы здоровых людей)
В сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах. В сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).
Нейросеть не заменяет человеческий мозг в части мышления. Однако благодаря доступу к огромной базе данных текстов, картинок, видео, аудио, а также алгоритмов их комбинирования может во многих случаях не хуже человека собирать данные элементы в осмысленный и полезный контент.
Многослойные нейронные сети
Нейросетевые сервисы способны стать серьезным подспорьем для специалистов в областях, где отставание от актуальных трендов некритично. В будущем нейронки могут существенно подтянуться в области обучения анализу текущей обстановки. И если это произойдет, то варианты их практического применения в целях автоматизации человеческого труда значительно расширятся.
Примечательно, что разным нейросетям по итогам обучения (тестирования) могут выставляться оценки — показатели результативности обучения. Если конкретная нейросеть получит более высокие баллы, то именно ее модель будет признана наиболее удачной и на базе нее разработчики акцентируют дальнейшее улучшение полезных свойств нейронки в той или иной сфере применения.
Как видно из схемы однослойной нейронной сети, представленной справа, сигналы [math]x_1, x_2, \ldots x_n[/math] поступают на входной слой (который не считается за слой нейронной сети), а затем сигналы распределяются на выходной слой обычных нейронов. На каждом ребре от нейрона входного слоя к нейрону выходного слоя написано число — вес соответствующей связи.
Это определение «обучения нейронной сети» соответствует и биологическим нейросетям. Наш мозг состоит из огромного количества связанных друг с другом нейросетей, каждая из которых в отдельности состоит из нейронов одного типа (с одинаковой функцией активации). Наш мозг обучается благодаря изменению синапсов — элементов, которые усиливают или ослабляют входной сигнал.
Работу скрытых слоев нейронов можно сравнить с работой большого завода. Продукт (выходной сигнал) на заводе собирается по стадиям на станках. После каждого станка получается какой-то промежуточный результат. Скрытые слои тоже преобразуют входные сигналы в некоторые промежуточные результаты.
Для построения искусственной нейронной сети будем использовать ту же структуру. Как и биологическая нейронная сеть, искусственная состоит из нейронов, взаимодействующих между собой, однако представляет собой упрощенную модель. Так, например, искусственный нейрон, из которых состоит ИНС, имеет намного более простую структуру: у него есть несколько входов, на которых он принимает различные сигналы, преобразует их и передает другим нейронам. Другими словами, искусственный нейрон — это такая функция [math]\mathbb^n \rightarrow \mathbb[/math] , которая преобразует несколько входных параметров в один выходной.
Чтобы обучать эту функцию, сначала надо выбрать функцию ошибки, которую потом можно оптимизировать градиентным спуском. Число неверно классифицированных примеров не подходит на эту кандидатуру, потому что эта функция кусочно-гладкая, с массой разрывов: она будет принимать только целые значения и резко меняться при переходе от одного числа неверно классифицированных примеров к другому. Поэтому использовать будем другую функцию, так называемый критерий перцептрона: [math]E_P(w) = -\sum_ y(x)(\sigma(w^T \cdot x))[/math] , где [math]M[/math] — множество примеров, которые перцептрон с весами [math]w[/math] классифицирует неправильно.
Само обучение нейронной сети можно разделить на два подхода: обучение с учителем [на 28.01.19 не создан] и обучение без учителя [на 28.01.19 не создан] . В первом случае веса меняются так, чтобы ответы сети минимально отличались от уже готовых правильных ответов, а во втором случае сеть самостоятельно классифицирует входные сигналы.
Соединения отображения временных и пространственных характеристик [ ]
Как правило, в большинстве нейронных сетей есть так называемый входной слой, который выполняет только одну задачу — распределение входных сигналов остальным нейронам. Нейроны этого слоя не производят никаких вычислений. В остальном нейронные сети делятся на основные категории, представленные ниже.
Такой метод обычно применяется, если полезность нейронки оценивается исходя из степени соответствия результата обработки информации тем или иным стандартам (требованиям), которые определяет человек. Типичный пример — обучение распознаванию голоса. Оно будет практически полезным, если нейросеть сможет преобразовать речь в грамматически корректные текстовые конструкции, независимо от способа произношения.
Таким образом, нейросеть — модель, призванная приблизить компьютер к мозгу человека не за счет сложности вычислений, а за счет алгоритмов комбинирования элементов, входящих в базы данных. Благодаря их большому объему, а также скорости комбинирования, достигаемой современными компьютерами, нейросети конструируют многие виды контента на уровне, сопоставимом с человеческим.
Возможности современных нейронок предопределяют их растущую важность в жизни человека. Сейчас нейросети могут создавать (преобразовывать) в соответствии с запросом пользователя различные виды данных — текстовые, графические, видео или аудио. Либо формировать иные значимые сигналы (например, обеспечивающие управление устройствами).
Помимо входного и выходного слоев эти нейронные сети содержат промежуточные, скрытые слои. Такие сети обладают гораздо большими возможностями, чем однослойные нейронные сети, однако методы обучения нейронов скрытого слоя были разработаны относительно недавно.
Просто так передавать взвешенную сумму [math]net[/math] на выход достаточно бессмысленно — нейрон должен ее как-то обработать и сформировать адекватный выходной сигнал. Для этих целей используют функцию активации, которая преобразует взвешенную сумму в какое-то число, которое и будет являться выходом нейрона. Функция активации обозначается [math]\phi(net)[/math] . Таким образом, выходов искусственного нейрона является [math]\phi(net)[/math] .
Идею перцептрона предложил нейрофизиолог Фрэнк Розенблатт. Он предложил схему устройства, моделирующего процесс человеческого восприятия, и назвал его «перцептроном» (от латинского perceptio — восприятие). В 1960 году Розенблатт представил первый нейрокомпьютер — «Марк-1», который был способен распознавать некоторые буквы английского алфавита.
Компьютеры, следуя соответствующим правилам и алгоритмам, в установленном порядке комбинируют указанные данные, в результате чего может конструироваться осмысленный текст или создаваться картинка. Если человек текст придумывает (полагаясь в том числе на интуитивную составляющую), то компьютер — составляет из «конструктора», руководствуясь правилами.