Содержание статьи
Искусственный интеллект: преимущества в современном мире
Применение
Искусственный интеллект может применяться как в качестве партнёра в играх (например, шахматах), так и в более серьёзных задачах. Например, с 1990-х годов ИИ используется для распознания речи, что повышает удобство различных сервисов. Способен искусственный интеллект и распознавать живую речь, для чего недостаточно просто распознавать отдельные слова. Ещё один вариант использования — компьютерное зрение. Мир, в котором мы находимся имеет три измерения, в то время как устройства ввода визуальной информации, что у человека, что у машины, воспринимают только двухмерную картинку. Задача ИИ в данном случае — обработать имеющееся изображение для распознания объектов на нём. Также ИИ используются для так называемых «экспертных систем» — систем анализа данных в определённой сфере знаний или деятельности, действующей эффективнее, чем человек за счёт высокой скорости обработки [3] [7] [8] .
Главное отличие искусственного интеллекта от других программ в отсутствии чётко заданного алгоритма решении задачи [3] . Согласно одной из распространённых версий, есть необходимый набор свойств для программы, чтобы считаться искусственным интеллектом. Исследователи уточняют, что список может быть неполным, так как какие-то из свойств интеллекта ещё не открыты или достаточно не изучены. Список выглядит так [4] :
В 1956 году Джон Маккарти впервые в истории ввёл в оборот термин «искусственный интеллект» (англ. artificial intelligence ). Год спустя Аллен Ньюэлл, Герберт Саймон и Клиффорд Шоу разработали первую программу, попавшую в эту категорию. Она предназначалась для игры в шахматы и в отличие от предыдущих основывалась на эвристике, то есть не имела точных теоретических оснований. В 1960 году ими же была разработана программа для решения головоломок, основанная на тех же принципах [3] .
ChatGPT и другие подобные системы никогда не стали был реальностью, если бы не самоотверженный труд тысяч программистов в области машинного обучения. Разработчики играют важную роль в создании и улучшении ИИ. Они используют различные языки программирования, фреймворки, библиотеки и инструменты для реализации алгоритмов и методов машинного обучения, нейронных сетей, глубокого обучения и других подходов ИИ. Они также тестируют, отлаживают и оптимизируют свои программы, а также следят за их безопасностью и эффективностью.
ИИ в своем зачаточном состоянии существует уже десятилетия, но в последние годы он стал более популярным и востребованным благодаря росту вычислительной мощности, доступности больших объемов данных и развитию новых алгоритмов и методов машинного обучения. Кроме технической части необходимо развивать и применять ИИ с учетом этических, юридических и социальных аспектов, а также налаживать сотрудничество между различными заинтересованными сторонами — учеными, разработчиками, мировыми правительствами и общественными организациями для того, чтобы ИИ помог миру, а не создал дополнительных проблем.
Конечная цель практически всех исследований в области искусственного интеллекта — получить ИИ уровня, сопоставимого с человеческим интеллектом. В методах достижения этой цели единства у исследователей нет: кто-то считает, что это достижимо в обозримом будущем с применением существующих технологий и подходов путём увеличения вычислительной и запоминающей мощности несущих ИИ-устройств, а кто-то — что сроки загадывать невозможно, так как существующие подходы к созданию искусственного интеллекта требуют переработки или даже полной замены другими [1] .
Не так давно более 1000 экспертов, включая технологического магната Илона Маска, подписали открытое письмо с призывом приостановить на 6 месяцев разработку ИИ-систем, более мощных, чем популярный GPT-4. Ссылаясь на потенциальные риски для человечества, авторы призывают к осторожности.
В 1960-х годах Стив Кук, Ричард Карп и другие учёные разработали теорию NP-полных задач, которые в теории решаемы, но время, необходимое на решение таких задач зависит от сложности задачи экспоненциально. При этом люди способны решать подобные задачи зачастую за гораздо меньшее время [1] . К началу 1970-х годов наука об искусственном интеллекте признала приоритет программирования систем над построением их материальной части в деле создания ИИ [6] . Примерно в это же время, начался резкий вал критики в отношении идей создания искусственного интеллекта, вылившийся в сокращение финансирования. В первую очередь это было связано с небольшими вычислительными мощностями существовавших тогда компьютеров, не позволявшими запустить сложную многоуровневую программу, из-за чего все практические образцы ИИ оставались на уровне «игрушек» (наибольшего успеха достигли программы для игры в шахматы).
Почему технологии ИИ стали так популярны?
Есть ли у Маска скрытые мотивы? С одной стороны, возможности продвинутого ИИ вызывают тревогу. Но участие Маска настораживает. Его Tesla использует далеко не совершенный ИИ для автопилота. Приостановка продвижения ИИ могла бы дать Маску время догнать конкурентов. Такие себе «двойные стандарты» от самого богатого человека на Земле.
В 1930-х годах британский и австрийский математики Алан Тьюринг и Курт Гёдель, а также другие математики пришли к выводу, что не существует универсального алгоритма для решения любых задач в некоторых важных математических областях. Существуют задачи, которые не решаются путём составления алгоритма, но доступны к решению человеком, так что был сделан вывод, что компьютеры по своей природе не могут делать то, что делают люди [1] .
Несмотря на то, что в самой идее искусственного интеллекта исследователи ориентируются на интеллект человека, симуляция оного на компьютере — не есть цель большей части проектов. Используемый для оценки человеческого интеллекта коэффициент (IQ) не применим для оценки машинных систем, по причине того, что он завязан на интеллектуальное развитие ребёнка и если на взрослых людей эту шкалу можно экстраполировать, то высокие результаты искусственного интеллекта в тесте на IQ не будут означать высокого интеллекта системы. При этом, некоторые из задач, используемых в этих тестах всё же помогают изучать эффективность конкретного искусственного интеллекта. Также, в то время как интеллект всех людей основывается на примерно одинаковых механизмах и развивается приблизительно по одному пути, в машинном интеллекте дело может обстоять с точностью до наоборот: при наличии превосходящих человеческие возможности вычислительных мощностей он основывается на тех принципах и цепочках, которые заложены в него разработчиком, а потому в каждой системе могут, с одной стороны, присутствовать интеллектуальные функции, развиваемые человеком только с подросткового возраста, а с другой — отсутствовать какие-то механизмы, присущие маленьким детям. Осложняется это тем, что природа человеческого интеллекта до сих пор изучена не до конца [1] [2] .
Тогда же, в конце 1940-х годов, была впервые выдвинута идея машинного обучения. Согласно им, необходимо сделать программу, которая обладает базовым набором знаний и возможностью усваивать информацию, что позволит делать только «оболочку», которая будет самостоятельно достраивать себя до полноценного ИИ [1] .
Для реализации поставленных перед ними задач разработчикам нужны не только технические навыки, но и математические знания, логическое мышление, творческий подход, интуиция и коммуникативные способности – так называемые soft skills. Разработчикам также необходимо постоянно обучаться новым технологиям и тенденциям в области ИИ, так как она быстро меняется и развивается.
Исследования в сфере искусственного интеллекта делятся на две категории: теоретические и практические; последние, в свою очередь имеют базовые и прикладные аспекты. Направлений исследования ИИ два. Первое, биологическое, основывается на том, что раз человек обладает интеллектом, искусственные системы должны имитировать его психологию или физиологию. Второе, феноменологическое, изучает само понятие интеллекта, проблемы, стоящие перед миром и способы достижения целей. Оба этих подхода в определённой степени взаимодействуют между собой. Также исследования ИИ тесно взаимодействуют с философией, особенно современной аналитической, так как обе отрасли науки изучают мышление [5] .