Как написать искусственный интеллект

0
41

Как создать искусственный интеллект? (Почти) исчерпывающее руководство

Стадия 4. Азарт

А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.

Когда у новичка появляется первая мысль о создании AI и программировании в целом, глаза наполняются блеском. Сразу скажем, что все наши преподаватели прошли этот этап. Однако он заканчивается на грустной ноте, потому что начинающий разработчик сталкивается с тысячами страниц скучной теории, без которой создать ИИ невозможно.

К этой категории относят ботов в компьютерных играх, голосовых помощников и первые версии нейросетей. Особенность слабого AI — узкая специализация. Они не могут выйти за рамки скриптов и функций, которые были заложены разработчиком. Любая непредсказуемая ситуация поставит компьютер в тупик

Это распространенный язык для работы с ИИ и нейросетями. У популярности есть 2 причины: гибкость и простота изучения. Кроме того, у Python большое сообщество, поэтому в интернете можно найти готовые библиотеки и фреймворки, упрощающих реализацию ботов. Например, TensorFlow, PyTorch и Keras помогут создать сложные ML-модели ChatGPT и LLaMA.

К слову, если вы всё-таки взялись за язык Python, то создать довольно простого бота можно, обратившись к этому подробному мануалу. Для других языков, таких как C++ или Java, вам также не составит труда найти пошаговые материалы. Почувствовав, что за созданием ИИ нет ничего сверхъестественного, вы сможете смело закрыть браузер и приступить к личным экспериментам.

Во время обучения рекомендуется регулярно заниматься проверкой промежуточных результатов. В зависимости от качества материала качество работы AI может не только расти, но и падать. К примеру, недавно ChatGPT «отупел» в ходе общения с человеком, из-за чего потерял возможность правильно определять тип числа.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая копирует голос

Стадия 2. Принятие

Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является математика. Да-да, искусственный интеллект куда сложнее написания прикладных программ — одних знаний о проектировании ПО вам не хватит.

Когда спесь немного сбита студенческой литературой, можно приступать к практике. Бросаться на LISP или другие функциональные языки пока не стоит — сначала стоит освоиться с принципами проектирования ИИ. Как для быстрого изучения, так и дальнейшего развития прекрасно подойдёт Python — это язык, чаще всего используемый в научных целях, для него вы найдете множество библиотек, которые облегчат ваш труд.

Когда технологическая основа готова, а основные алгоритмы прописаны и вручную протестированы, начинается длительный период тренировки. Чтобы сделать самостоятельный и универсальный интеллект, необходимо углубляться в изучение теории, а также хрестоматийных пособий, например:

Разработчики AI должны стремиться к созданию этичной технологии, которая сделает человеческую лучше, а не добавит новые трудности и угрозы, включая захват мира, о котором уже много лет пишут фантасты. Терминатором управляет совершенный ИИ, до которого, конечно, далеко, но когда-то полет на самолете казался фантастикой.

На этой неделе вы могли прочитать крайне мотивирующей кейс от ученика GeekBrains Валерия Турова, который изучил профессию «Программист Java», где он рассказал об одной из своих целей, которая привела в профессию — желанию познать принцип работы и научиться создавать самому игровых ботов.

Теперь же, когда вы уже вполне ясно представляете, как ИИ создавать и чем при этом пользоваться, пора выводить свои знания на новый уровень. Во-первых, для этого потребуется изучение дисциплины, которое носит название «Машинное обучение». Во-вторых, необходимо научиться работать с соответствующими библиотеками выбранного языка программирования. Для рассматриваемого нами Python это Scikit-learn, NLTK, SciPy, PyBrain и Numpy. В-третьих, в развитии никуда не обойтись от функционального программирования. Ну и самое главное, вы теперь сможете читать литературу о ИИ с полным пониманием дела:

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь