Содержание статьи
Искусственный интеллект: как и где изучать — отвечают эксперты
Нейронные сети
Есть множество курсов как на русском, так и английском языках, таких как Школа анализа данных Яндекса, курсы SkillFactory и OTUS. Но прежде чем инвестировать время и деньги в специализированное обучение, думаю, стоит «проникнуться темой»: посмотреть открытые лекции на YouTube с конференций DataFest за прошлые годы, пройти бесплатные курсы от Coursera и «Хабрахабра».
Найти работу, не имея практического опыта в сфере анализа данных и машинного обучения, сейчас довольно сложно. Но можно обучаться самостоятельно на онлайн-курсах, участвовать в соревнованиях на Kaggle и подобных платформах. Это позволит наработать портфолио, которое станет вашим конкурентным преимуществом при поиске работы.
Прежде чем изучать искусственный интеллект, надо решить принципиальный вопрос: красную таблетку взять или синюю.
Красная таблетка — стать разработчиком и окунуться в жестокий мир статистических методов, алгоритмов и постоянного постижения непознанного. С другой стороны, не обязательно сразу кидаться в «кроличью нору»: можно стать управленцем и создавать ИИ, например, как менеджер проекта. Это два принципиально разных пути.
Есть много онлайн-курсов, которые дают базовое представление об этих технологиях и общих принципах ИИ, например курс Andrew Ng. И в плане обучения этой теме сейчас в России эффективнее всего самостоятельное обучение или в локальной группе по интересам (например, в Москве я знаю о существовании как минимум пары групп, где люди делятся опытом и знаниями).
Учиться рекомендую в хороших российских вузах! Например, в МФТИ, МГУ, ВШЭ есть соответствующие кафедры. Большое разнообразие тематических курсов доступно на Coursera, edX, Udacity, Udemy и других MOOC площадках. Некоторые ведущие организации имеют собственные программы подготовки в области ИИ (например, Школа анализа данных у Яндекса).
И, наконец, совсем уж джедайский уровень — получение узкоспециальных знаний. Например, для глубокого обучения потребуется овладеть основными архитектурами и алгоритмами градиентного спуска. Если интересны задачи обработки естественного языка, то рекомендую изучить рекуррентные нейронные сети. А будущим создателям алгоритмов для обработки картинок и видео стоит хорошенько углубиться в свёрточные нейронные сети.
Примеры успешных проектов по созданию ИИ
Если же вы хотите «глубоко погрузиться» в тему, ряд компаний в Москве предлагает недельные интенсивы с практическими занятиями, и даже предлагают оборудование для экспериментов (например, newprolab.com), правда, цена таких курсов от нескольких десятков тысяч рублей.
Могу посоветовать с самого начала готовить себя к тому, что учиться придётся много. Вне зависимости от того, что подразумевается под «заниматься ИИ» – работа с большими данными либо нейросети; развитие технологии или поддержка и обучение некой определённой уже разработанной системы.
Это зависит от Вашей базовой подготовки. Прежде всего, необходима математическая культура (знание статистики, теории вероятностей, дискретной математики, линейной алгебры, анализа и др.) и готовность многому быстро учиться. При реализации методов ИИ потребуется программирование (алгоритмы, структуры данных, ООП и др.).
Первый отлично подходит, если вы уже решили, что будете писать алгоритмы искусственного интеллекта. Тогда вам надо начать с самого популярного направления на сегодняшний день – машинного обучения. Для этого нужно знать классические статистические методы классификации, кластеризации и регрессии. Полезно будет также познакомиться с основными мерами оценки качества решения, их свойствами… и всем, что попадется вам по пути.
Нейронные сети (или искусственные нейронные сети) представляют собой модели, вдохновленные биологическими нейронными сетями человеческого мозга. Они состоят из соединенных и взаимодействующих узлов, называемых «искусственными нейронами», которые обрабатывают информацию.
Основные языки программирования для работы в области ИИ и машинного обучения — R и Python. Долгое время эти языки использовались в академических кругах и для них было создано большое количество библиотек. Сейчас развиваются инструменты, позволяющие быстро стартовать свой проект: Keras, TensorFlow, Theano, Caffe, scikit-learn. Последнее время Microsoft начал активно развивать свои инструменты: CNTK, ML.NET. Они позволяют создавать интеллектуальные решения на языке C#.
Если говорить о направлениях деятельности, то здесь можно выделить обучение прикладных нейронных сетей и разработку совершенно новых вариантов нейросетей. Яркий пример: существует такая очень востребованная сейчас специальность — «дата-сайентист» (Data Scientist). Это разработчики, которые, как правило, занимаются изучением и подготовкой неких наборов данных для обучения нейросетей в конкретных, прикладных областях. Резюмируя, подчеркну, что каждая специализация требует отдельного пути подготовки.
Если говорить об учебных заведениях, лучше поступить на курсы при кафедрах прикладной математики и информатики, подходящие образовательные программы есть. Для проверки своих способностей можно принять участие в соревнованиях Kaggle, где предлагают свои кейсы крупные мировые бренды.