Нейросети на каком языке писать

0
14

Нейронные сети на Python: как всё устроено

Причины выбора Python для программирования нейронных сетей

Сегодня IT-индустрия развивается небывалыми темпами, вместе с этим растет популярность машинного обучения. Оно оказывает огромное влияние на многие процессы в мире, поэтому все больше людей интересуется ее направлениями. Одно из них – нейронные сети. Они строятся по принципу организации и функционирования нашего мозга.

Если вы уже знакомы с Java, то сможете зайти с ним в машинное обучение. Но если вы его не знаете и собираетесь идти в ИИ, лучше изучите другой язык. Да, на GitHub есть много Java-проектов в сфере машинного обучения. Но инфраструктура в сфере ML для того же Python гораздо богаче, выучить его с нуля до хорошего уровня проще.

Одновременно существует две версии языка: Python 2 и Python 3. У Python 3 нет обратной совместимостью со второй версией — то есть код, написанный на старой версии, не будет работать в новой. Советуем изучать именно Python 3 — предыдущий уже официально не поддерживается.

Кроме того, активно развиваются Datascience и нейронные сети на Python. Изучить язык можно самостоятельно, однако на это уйдет много времени и скорее это будет введение в обучение (нейронные сети на Python вряд ли получится создать без помощи специалиста). Если вы хотите освоить язык программирования Python быстро и качественно, обратите внимание на курс от GeekBrains в онлайн-формате.

Человеческий мозг состоит из более ста миллиардов клеток-нейронов. Место контакта двух нейронов – синапс. Он служит для передачи нервных импульсов от одной клетки к другой. Когда через него к нейрону придет достаточное количество импульсов, тогда нейрон передаст их дальше. Так строится наше мышление.

Такое возможно благодаря применению математических матриц. Они представляют собой таблицы, состоящие из строк и столбцов, на пересечении которых находятся числа – элементы матрицы. Для простоты создадим модель одного нейрона, имеющего три источника информации и один выход. Цель – обучить нейронную сеть решать задачу, представленную ниже на изображении. Тренировочным набором будут примеры с первого по четвертый.

ЧИТАТЬ ТАКЖЕ:  Что такое искусственный интеллект в информатике кратко

С++

Исследовательские проекты. Большое число готовых примеров нейронных сетей на Python – это исследовательские проекты. При этом ученые, работающие над ними, чаще всего программистами не являются. Этот язык имеет низкий порог входа: никто не занимается написанием нейронных сетей на Python с нуля, так как это занимает много времени. Существуют библиотеки для нейронных сетей Python, которые уже написали специалисты. Так вокруг Питон сложилось целое сообщество по нейросетям. Если вы занимаетесь исследовательской деятельностью, то следуйте в этом вопросе примеру других.

Его можно и нужно использовать для веб-программирования низкоуровневого системного программирования в качестве языка спецификации. Он поддерживает динамическую типизацию — это делает его более гибким, но и увеличивает вероятность ошибки. В Julia есть и мастхэв-библиотеки для ML: Flux, Mocha.jl, Knet, TensorFlow.jl, ScikitLearn.jl.

Наиболее распространенным языком программирования для искусственных нейросетей является Python. Почему именно нейронные сети на Python получили такую популярность, несмотря на наличие множества других языков программирования? IT-специалисты часто сходятся во мнении, отвечая на этот вопрос, и выделают несколько причин.

Можно привести аналогичный пример с другим языком программирования. Фортран – один из первых языков высокого уровня, на котором написано множество программ и библиотек подпрограмм. Но сегодня программистами он не используется, зато широко распространен у физиков.

Одна из разновидностей машинного обучения – обучение с учителем. Его суть заключается в том, что систему «тренируют». На первом этапе ей предлагают множество примеров определенной проблемы и желаемый вывод, таким образом, ее учат понимать прошлые данные. На втором этапе, когда система натренирована, ей предоставляют новые входные данные с целью самостоятельного предсказания выводов.

Лаконичность и интероперабельность. Язык позволяет разрабатывать сложные алгоритмы за короткое время. Его отличают простота, лаконичность и выразительность. Помимо этого он обладает мощным механизмом интероперабельности с C\C++, что позволяет производить быстрые вычисления. Можно создавать простые и сложные нейронные сети на Python.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь