Нейросеть сколько нейронов

0
19

Как работает нейронная сеть: разбираемся с основами

Что такое нейросети?

При этом отношение объекта к классу определяется установкой в 1 соответствующего элемента выходного вектора ( i -го элемента для j -го класса), в то время, как остальные элементы устанавливаются в 0. Тогда, например, второму классу будет соответствовать единица на 2-м выходе сети и 0 на остальных (рис. 2).

Очевидно, что при таком способе кодирования, чем сильнее максимальное значение отличается от остальных, тем выше уверенность в том, что сеть отнесла объект именно к данному классу. Формально эту уверенность можно ввести в виде показателя, равного разности между максимальным значением на входе сети (которое, собственно, и определяет принадлежность к классу) и ближайшим к нему значением на другом выходе.

Из архитектуры и режима работы нейросети следует несколько особенностей, ключевых для понимания направления. Нейросети закрыты. Мы не можем сказать, по каким критериям программа «решает», что на картинке изображен человек или что текст является стихотворением. Все это происходит автоматически; задача разработчика — правильно описать структуру и задать формулы. Примерно так же мы не можем достоверно сказать, что именно происходит в человеческом мозгу, почему он понимает, что собака — это собака, даже если впервые видит незнакомую породу. Если у собаки не будет хвоста, она окажется бесшерстной или покрашенной в неестественный цвет, мы все равно определим ее как собаку — по ряду характеристик, которые до конца не осознаем сами. Нейроны в сетях независимы. Каждый нейрон никак не связан с процессом работы других. Да, они получают друг от друга информацию, но их внутренняя деятельность не зависит от других элементов. Поэтому даже если один нейрон выйдет из строя, другой продолжит работать — это важно в вопросе отказоустойчивости. Подобная устойчивость свойственна и биологическим нейронным сетям, которые продолжают работать, даже если оказываются повреждены. Но у независимости есть и недостаток: из-за нее решения оказываются многоступенчатыми и порой хаотичными, их сложно предсказать и повлиять на них. Нейросети очень гибкие. Так как нейроны сами подбирают критерии и не зависят друг от друга, нейросети более гибкие, чем другие модели машинного обучения. Их архитектура унаследовала важные свойства биологической нервной системы: способность самообучаться и приспосабливаться к новым данным, возможность игнорировать «шумы» и неважные детали входной информации. Как живой человек сможет различить знакомого в толпе, так нейросеть можно научить выделять нужное и отбрасывать ненужное. Гибкость проявляется не только в этом. Нейросети способны решать широкий спектр задач, и их можно адаптировать практически под любые обстоятельства. Нейросети приблизительны. Мы уже говорили: любой результат, выданный нейронной сетью, приблизителен и неточен. Например, сеть, которая распознает картинки, может сказать «Здесь изображена корова» только с определенной вероятностью. И эта вероятность всегда будет меньше единицы, то есть ниже ста процентов. Более того: если два раза показать нейросети одну и ту же картинку, она может выдать разные вероятности в качестве ответа. Различаться они, конечно, будут на сотые и тысячные доли, но это все же неодинаковый, недетерминированный результат. Нейросети могут ошибаться. Любой искусственный интеллект уступает человеческому. Это происходит из-за того, что мощности нашего мозга до сих пор невозможно повторить. В теле человека 86 миллиардов нейронов, и еще не создана сеть, которая хотя бы немного приблизилась к этому числу. В современных нейросетях содержится примерно 10 миллиардов нейронов. Даже при наличии продвинутых формул искусственная нейросеть все равно остается упрощенной моделью — например, в ней нет понятия силы импульса, которое есть в биологических нервах. У биологических нейронных сетей, конечно, тоже бывают ошибки. Но для нейросетей они проявляются более ярко за счет их упрощенной структуры. Читайте также: Искусственный интеллект против сценаристов: как нейросети создают истории

Например, в задаче классификации заёмщиков на «плохих» и «хороших» можно оставить всего два признака «Доход» и «Возраст». Тогда весьма вероятно, что два заёмщика с одним и тем же возрастом и доходом окажутся в разных классах. Чтобы сделать заёмщиков различимыми нужно добавить ещё один признак, например, число иждивенцев. Таким образом, отбор признаков для обучения классификатора на основе НС является поиском компромисса.

Например, в другом способе представления, номер класса кодируется в двоичной форме в выходном векторе сети. Тогда если число классов равно 5, то для их представления будет достаточно трёх выходных нейронов, а код, соответствующий, скажем, 3-му классу будет 011. Недостатком подхода является отсутствие возможности использования показателя уверенности, поскольку разность между любыми элементами выходного вектора всегда равна 0 или 1. Следовательно изменение любого элемента выходного вектора неминуемо приведёт к ошибке. Поэтому для увеличения «расстояния» между классами удобно использовать код Хэммминга, который позволит точность классификации.

Определённым компромиссом между параметрическим и метрическими методами является использование для решении задач классификации нейронных сетей. Нейронные сети являются непараметрическими моделями, не требующими предположений о вероятностном распределении данных, но при этом и не используют меры расстояний. Это делает их универсальными классификаторами, позволяя получать результаты даже в случаях, когда параметрические и метрические классификаторы не обеспечиваю приемлемого решения.

Структуру нейрона воссоздают при помощи кода. В качестве «аксона» используется ячейка, которая хранит в себе ограниченный диапазон значений. Информация о как бы «нервных импульсах» хранится в виде математических формул и чисел. Связи между нейронами тоже реализованы программно. Один из них передает другому на вход какую-либо вычисленную информацию, тот получает ее, обрабатывает, и затем передает результат уже своих вычислений дальше. Таким образом, информация распространяется по сети, коэффициенты внутри нейронов меняются — происходит процесс обучения.

Для построения эффективно работающего классификатора очень важно правильно выбрать размер сети, а именно количество связей между нейронами, которые настраиваются в процессе обучения и обрабатывают входные данные при её работе. С одной стороны, если весов в сети будет мало, то она не сможет реализовывать сложные функции разделения классов. С другой стороны, увеличение числа связей приводит к возрастанию информационной ёмкости модели (веса работают как элементы памяти).

Нейронные сети — это машинное обучение?

Первым шагом в этом направлении является отбор признаков, значимых с точки зрения различия классов. Действительно, объекты предметной области могут описываться большим числом признаков. Но не все они позволяют надёжно различать объекты различных классов. Например, если объекты разных классов имеют примерно одинаковый размер, то использование «габаритных» признаков не имеет смысла. Не желательно также использовать признаки, значения которых являются случайными и не отражают закономерностей распределения объектов по классам.

У нейросетей есть общие черты — например, наличие входного слоя, который принимает информацию на вход. Но много и различий. Для каждой из перечисленных выше задач потребуется своя нейронная сеть. У них будут различаться структуры, архитектура, типы нейронов и многое другое. Создать универсальный алгоритм невозможно, по крайней мере пока, поэтому сети отдельно оптимизируют под определенные спектры задач. Однонаправленные. Нейросети работают в одном направлении — как оригинальный перцептрон. Это значит, что у них нет «памяти», а поток информации передается только в одну сторону. Структура выходит более простой, чем в случае с рекуррентными сетями, о которых мы поговорим ниже. Но это не плохо: для решения некоторых задач простые структуры подходят лучше. Однонаправленные сети хорошо подходят для задач распознавания. Суть примерно та же, что и в случае с восприятием окружающего мира реальным мозгом. Органы чувств получают информацию и передают ее в одном направлении, та в процессе трансформируется и распознается. Мозг делает вывод: «я вижу собаку», «слышна рок-музыка», «на улице холодно». Однонаправленная модель работает по тому же принципу, но более упрощенно. Еще один вариант применения — прогнозирование. Принцип такой же: «На улице тучи — значит, пойдет дождь». Но критерии, по которым нейросети делают выводы, до конца непонятны. Рекуррентные. У этих сетей есть эффект «памяти» благодаря тому, что данные передаются в двух направлениях, а не в одном. В результате они воспринимают предыдущую полученную информацию и могут глубже ее «анализировать». Это полезно, если перед сетью стоит сложная задача вроде перевода текста. Однонаправленная нейросеть переведет каждое слово по отдельности, и получится бессвязная «каша». Рекуррентная сможет учесть контекст и перевести, например, apple tree не как «яблоко дерево», а как «яблоня». Или более сложный пример: идиома that’s a piece of cake в контексте переведется не как «это кусок торта», а как «проще простого» в зависимости от стиля текста. На это сейчас способны не все переводчики. Задачи для рекуррентной сети можно сформулировать так: это работа с большим объемом данных, которые надо разбить на более мелкие и обработать. Причем с учетом связей между друг другом. Правильно настроенная рекуррентная нейронная сеть способна отличать контекст одной ситуации от другой. Это важно, например, при создании «говорящих» ботов: вспомните, как «обижаются» голосовые помощники, если сказать им что-то грубое. Сверточные. Это отдельная категория нейронных сетей, менее закрытая, чем другие, благодаря принципиальной многослойности. Многослойными называются нейронные сети, в которых нейроны сгруппированы в слои. При этом каждый нейрон предыдущего слоя связан со всеми нейронами следующего слоя, а внутри слоев связи между нейронами отсутствуют. Сверточные сети используют для распознавания образов. У них особая структура слоев: часть занимается «свертыванием», преобразованием картинки, а часть — группировкой и распознаванием маленьких дискретных элементов, созданных на сверточных слоях. Таких слоев несколько. Результат — более высокая точность и качественное восприятие информации. Интересный факт: как обычные нейросети были основаны на нейронах в головном мозгу, так сверточные — на структуре зрительной коры. Это та часть мозга, которая отвечает за восприятие картинок. В ней чередуются «простые» и «сложные» клетки: первые реагируют на определенные линии и очертания, вторые — на активацию конкретных простых клеток. Так происходит процесс распознавания образов в мозгу, и примерно так же устроена сверточная нейросеть. Сверточные слои «воспринимают» отдельные элементы картинки как простые клетки — линии. Особые слои, называемые субдискретизирующими, реагируют на конкретные найденные элементы. Чем больше слоев, тем более абстрактные детали способна заметить и определить сеть. На результат работы промежуточных слоев можно посмотреть, если заглянуть в файлы нейросети. Поэтому она и считается менее закрытой. Результат больше всего напоминает карту признаков из машинного обучения.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая делает из фотографии аниме

Нейросети используются в огромном количестве сфер, в первую очередь в тех, где от машины нужна функциональность сродни человеческой. То есть в ситуациях, где нет четко заданного скрипта, описывающего каждый конкретный случай; входные данные могут быть любыми, поэтому нужно уметь обрабатывать все возможные варианты. Хороший пример — робот-ассистент или подсказки в поле
поиска. В свое время именно поисковые системы дали толчок развитию методов искусственного интеллекта. Пока с нейронными сетями работают в основном большие компании и холдинги. Для того чтобы создать нейросеть, способную достаточно грамотно работать в сложных условиях, нужны мощные машины и большие наборы обучающих данных. Такие ресурсы могут себе позволить только крупные корпорации. Еще есть стартапы — они в основном работают на арендованных мощностях и концентрируются на создании нейросети под конкретные задачи. Пример — знаменитое приложение Prisma. Отрасль может быть любой. Во всех сферах есть задачи, которые в силах решить нейросеть. Рассмотрим основные области задач, для решения которых используются нейросети. Классификация. Нейросеть получает объект и относит его к определенному классу. Самая первая сеть, перцептрон, решала именно задачи классификации, но очень простые. Сейчас возможности шире: сети могут классифицировать клиентов и выделять аудитории по интересам — вы сталкиваетесь с этой возможностью каждый день, когда ваш электронный почтовый ящик определяет (классифицирует) некоторые письма как спам. Но это не единственный пример: автоматический скоринг в банках, контекстная реклама — это все касается классификации. Распознавание. Задача поставлена иначе: она не в том, чтобы отнести объект к одному из классов, а в том, чтобы найти нужное среди множества данных — например, лицо на картинке. «Умные» фильтры для фотографий работают именно так. Можно вспомнить многочисленные нейросети, которые превращают фотографии в картины маслом или постеры, — они тоже сначала распознают, что находится на изображении. Распознавать можно и текстовые данные, например приложения для определения названия музыкальных треков. Но распознавание — это не только приложения. Это и поиск по картинке, и чтение текста с изображения, и работа «умных» камер слежения. Разнообразные программы для людей с ограниченными возможностями тоже используют возможности распознавания. Сюда же относятся голосовые ассистенты, которые распознают речь. Сейчас нейросети начинают активно применяться в медицине, например распознают информацию на снимках, что облегчает диагностику. Прогнозирование. Третий вариант — нейросети, которые получают входные данные и на их основе что-то предсказывают. Их часто применяют в аналитике, например в финансовом секторе такая сеть может предсказывать поведение рынка, а в маркетинге — тренды и аудитории. Нейросетевые программы, которые дописывают текст или дорисовывают изображение, тоже по сути занимаются прогнозированием. Так же работают поисковые системы: вы начинаете вводить фразу, а вам предлагают ее завершение. Это тоже задача прогнозирования, причем интересная — с учетом смысла предыдущих слов. Генерация. Нейронные сети могут сами генерировать контент. Пока он далек от идеального, но программы становятся умнее. Сейчас нейросети могут писать музыку, создавать изображения, и со временем они становятся все больше похожими на настоящие. Это комплексная задача, которая может состоять из нескольких предыдущих. Например, «дорисовка» человека на фотографии — задача распознавания и прогнозирования одновременно. Генерация текста в определенном стиле — классификация плюс прогнозирование.

Нейросети — математические модели и их программное воплощение, основанные на строении человеческой нервной системы. Самую простую нейронную сеть, перцептрон (модель восприятия информации мозгом), вы сможете легко самостоятельно написать и запустить на своем компьютере, не используя сторонние мощности и дополнительные устройства. Пройдите наш тест и узнайте, какой контент подготовил искусственный интеллект, а какой — реальный человек. Чтобы лучше понять, что это такое, попробуем сначала разобраться, как работают биологические нейронные сети — те, что находятся внутри нашего организма. Именно они стали прообразом для машинных нейронных сетей.

Нейросети действительно используются для решения задач, похожих на те, которые решает человеческий мозг. Но даже мощная нейросеть может ошибиться. И в некоторых случаях цена этой ошибки может быть крайне велика, а ее вероятность намного больше, чем если задачу решает человек. Поэтому сейчас нейронные сети используются скорее для ассистирования, чем для полномасштабной самостоятельной работы. Существуют проблемы, в решении которых машины действительно могут заменить человека. Это некоторые аналитические задачи, а также те, которые связаны с более-менее однообразными действиями. Например, с помощью нейросети может работать робот-почтальон. Но далеко не все задачи можно решить вот так. Например, робот может ответить на более менее стандартные вопросы в банковском приложении, но не поймет, что делать, если человек задаст что-то неочевидное.

Определённым компромиссом между параметрическим и метрическими методами является использование для решении задач классификации нейронных сетей (НС). Действительно, НС являются непараметрическими моделями, не требующими предположений о вероятностном распределении данных, но при этом и не используют меры расстояний. Это делает их универсальными классификаторами, позволяя получать результаты даже в случаях, когда параметрические и метрические классификаторы не обеспечиваю приемлемого решения.

Классификаторы, основанные на машинном обучении не требуют оценки параметров распределения исходных данных, а мера сходства в них формализуется с помощью функции расстояния (обычно, евклидова). Такие классификаторы называются метрическими. Как правило, они проще в реализации и использовании, чем параметрические, а их результаты удобнее для интерпретации и понимания. Но при этом метрические классификаторы являются эвристическими моделями — обеспечивают решение только в ограниченном числе практически значимых случаев, могут дать неточное или не единственное решение. Поэтому использовать их результаты нужно с известной долей осторожности.

Однако, используя специальные способы представления данных, можно адаптировать НС для работы с категориальными данными, т.е. получать на вход и формировать на выходе категориальные значения. Для этого категориальные признаки соответствующим образом кодируются с помощью числовых значений.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь