Содержание статьи
Как написать свою первую нейросеть на Python
Генерация контента
Основа взаимодействия с генеративным ИИ – запросы пользователей, которые они могут вводить как голосом, так с и помощью клавиатуры. При составлении промтов нужно использовать формулировки, применимые для обычных технических заданий, ориентированных на специалистов. Чем конкретнее изложено требование, тем релевантнее будет результат. В помощь – следующие рекомендации:
Нейронная сеть – компонент искусственного интеллекта (ИИ или AI), является компьютерной системой, выстроенной на базе искусственных нейронов (вычислительные элементы). Как биологические нейроны в мозге человека, искусственные осуществляют обмен информацией. Не являются классической программой с готовыми алгоритмами, а пишут их в процессе обучения. Например, если генеративному ИИ показать тысячу примеров домов – она будет легко распознавать их в разных вариациях и сюжетах. Чем больше выборка домов, тем выше точность сети. Классическая структура включает в себя 3 слоя искусственных нейронов:
Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.
Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.
Искусственные нейроны составляют узлы, в которые заложены формулы. Узел получает информацию, осуществляет вычисление и направляет его дальше. Связь между ними обеспечивают синапсы – пути передачи данных, каждый из которых имеет вес. Последний является числовым коэффициентом, демонстрирующим важность результата нейрона по отношению к общим показателям. В необученных сетях распределение весов – случайное, если в ходе обучения путь ведет к эффективным решениям – его значимость (вес) увеличивается. Связи и показатели постоянно корректируются до тех пор, пока система не начнет выдавать стабильные результаты.
Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.
Это лишь малая часть профессий, которые нейронки не смогут заменить в ближайшие десятилетия. Однако их применение сопряжено не только с вытеснением с рынка специалистов: во многих отраслях они выполняют функцию помощника, лишь автоматизируя часть рутинных задач.
С нейросетями немного сложнее, их невозможно запрограммировать один раз и навсегда: они обучаются, самостоятельно пишут алгоритмы и инструкции, проводят сверку с ответами. Например, сеть для генерации изображений: изначально она «увидела» огромное количество картинок с подписями, чтобы научиться определять, что же на них запечатлено. Если нужно обучить нейронку распознавать текст или музыку – применяются подходящие примеры. Рассмотрим, как это работает:
Как написать это на Python
Еще есть, например, метод обратного распространения ошибки — градиентный алгоритм для многослойных нейросетей. Сигналы ошибки, рассчитанные с помощью градиента, распространяются от выхода нейронной сети к входу, то есть идут не в прямом, а в обратном направлении.
Больше нейронов. В нашей тренировочной нейросети только один нейрон. Но если нейронов будет больше — каждый из них сможет по-своему реагировать на входные данные, соответственно, на следующие нейроны будут приходить данные с разных синапсов. Значит — больше вариативность, «подумать» и передать сигнал дальше может не один нейрон, а несколько. Можно менять и формулу передачи, и связи между нейронами — так получаются разные виды нейронных сетей.
Но нейронные сети — все же не человеческий мозг. Мозг сложнее, объемнее, в нем намного больше нейронов, чем в любой компьютерной нейросети. Поэтому чрезмерное обучение может сделать хуже. Например, переобученная нейросеть может начать распознавать предметы там, где их нет — так люди иногда видят лица в фарах машин и принимают пакеты за котов. А в случае с искусственной нейронной сетью такой эффект еще явнее и заметнее. Если же учить нейросеть на нескольких разнородных данных, скажем, сначала обучить считать числа, а потом — распознавать лица, она просто сломается и начнет работать непредсказуемо. Для таких задач нужны разные нейросети, разные структуры и связи.
Да, можно, и даже более сложную. В этом примере мы использовали только одну математическую библиотеку и четыре метода из нее, чтобы показать расчеты нагляднее. Но есть множество специальных библиотек и фреймворков для создания именно нейросетей, например Tenzorflow или Pandas. Они ускоряют процесс. Например, можно создать слой из нескольких десятков, а то и сотен нейронов, в одну строчку. А еще парой строчек добавить новые слои и задать правила для обучения.
Нейросети для бизнеса способны ставить и отслеживать выполнение задач, формировать персональные расписания и меню, проводить проверку/критику идей и давать полезные рекомендации по их эффективности. Помогают принимать решения и автоматически оценивать вероятность сделок, писать письма для email-рассылок и отвечать на них, создавать вакансии – доступных задач много. Актуальны не только для предпринимателей, существуют нейросети для дизайнеров, маркетологов, HR, авторов, программистов и других направлений.
Нейросети – компьютерные системы, имитирующие работу мозга человека. Они способны решать целый комплекс задач – от проверки программного кода и отрисовки картинок до написания текстов и музыкальных композиций. Легко выполняют роль «второго пилота», позволяя специалистам автоматизировать часть процессов, в некоторых случаях могут работать самостоятельно, основываясь лишь на текстовых или голосовых промтах (запросах). Рассказываем, что такое нейросеть простыми словами, разбираем принцип функционирования и основные сферы применения.