Содержание статьи
Что такое нейросеть: как устроен человеческий мозг «в цифре»
Трудности при работе с нейросетями
– конкуренция с людьми за рабочие места. В тех случаях, когда квалификация специалиста не особенно важна, сети могут заменить человека. Под удар попадают копирайтеры, иллюстраторы, дизайнеры, программисты. Это не значит, что у людей есть повод для паники, скорее это причина для профессионального роста и развития. Но повод, чтобы задуматься, серьёзный;
Искусственный интеллект — понятие более широкое. Оно включает в себя не только нейронные сети, но и другие методы обработки информации, в том числе экспертные и логические программы. Нейронные сети — один из видов искусственного интеллекта. Их отличительная особенность — обучение и адаптация в основе алгоритмов.
При глубоком обучении специалист по работе с данными предоставляет нейросети только необработанные данные, а та самостоятельно извлекает функции и обучается независимо. Если результат неудовлетворительный, то цикл обучения повторяется снова, пока нейросеть не будет давать корректные ответы.
Аналитики International Data Corporation подсчитали, что мировой рынок решений в сфере искусственного интеллекта будет расти в среднем на 18,6% ежегодно в период с 2022 по 2026 год. По мнению авторов исследования McKinsey, именно прикладной искусственный интеллект и внедрение машинного обучения стали двумя наиболее значимыми технологическими тенденциями на рынке ИИ. В 2022 году компании, занимающиеся генеративным искусственным интеллектом, привлекли $1,37 млрд — это почти столько же, сколько за предыдущие пять лет.
Эти «веса» помогают определить важность той или иной переменной во входных данных. При прохождении каждого слоя входные данные умножаются на их «веса», а затем суммируются. Если получившееся значение выше заданного порога, то нейрон активируется и передает данные на следующий уровень.
Классификация Такие нейросети берут заданные данные и классифицируют их. Например, могут догадаться, к какому жанру относится текст, или оценить платежеспособность человека по его банковскому профилю Предсказание Эти сети делают какие-то выводы на основе заданной информации. Сюда можно отнести как предсказание будущих доходов по текущим данным, так и «дорисовывание» картинки Распознавание Часто применяемая задача — распознавать те или иные объекты. Такие нейросети используются в умных камерах, при наложении фотофильтров, в камерах видеонаблюдения и других подобных программах и устройствах.
Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.
В основе искусственной нейронной сети лежит устройство нервной ткани человека. Она состоит из нервных клеток, связанных между собой длинными отростками. В клетках происходят нервные импульсы, они передаются по отросткам в другие клетки. Таким образом нервная ткань обрабатывает или генерирует информацию. Сами импульсы очень сложно расшифровать: это не понятные человеку данные, а набор слабых электрических токов, которые нейроны воспринимают как информацию.
Чем занимается специалист по нейронным сетям
Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.
Искусственная нейронная сеть — не модель человеческого мозга: даже самые мощные из существующих сетей не могут достигнуть таких мощностей и подобного количества нейронов. В человеческом мозгу огромное количество нервных клеток — десятки миллиардов. В искусственных нейросетях намного меньше нейронов. Для создания нейронной сети, по возможностям равной человеческому мозгу, сейчас нет мощностей.
Принцип действия нейросети не похож на классическую программу. Такой сети не дают четкого алгоритма: ее обучают, чтобы она могла самостоятельно выполнять ту или иную задачу. В результате деятельность программы становится менее предсказуемой, но более вариативной и даже творческой.
Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.
В последние годы с развитием нейронных сетей их стали использовать в том числе в SMM. Уже сейчас есть блоги, где изображения и другой контент частично генерируются нейросетями. Применяют их и в развлекательных целях: различные сервисы «перерисовывают» лица людей, делают из них картины, персонажей мультфильмов, вставляют лица в отрывки из кино. Все это возможно благодаря машинному обучению и нейросетям.
Востребованность специалистов по нейросетям постоянно растет. По данным сервиса по поиску работы HeadHunter за 2022 год, на российском рынке наблюдается нехватка соискателей на должности разработчиков систем искусственного интеллекта — на одну вакансию в этой сфере претендуют не больше двух кандидатов. По словам представителей рынка, проблема сохраняется уже в течение трех лет.
Распознавание и обработка естественного языка
При обучении нейронной сети все ее «веса» изначально задаются случайными значениями. Обучающие данные подаются на нижний, или входной, слой. Затем они проходят через последующие слои, пока не достигают выходного. Во время обучения «веса» и пороговые значения постоянно корректируются до тех пор, пока данные обучения не будут постоянно давать одинаковые результаты.
В последние годы нейронные сети прошли путь от простых сортировщиков картинок на смартфонах до помощников в решении глобальных задач в науке. Современные нейросети способны заменить или дополнить работу человека во всех случаях, когда решение нужно принимать на основе предыдущего опыта. «РБК Тренды» разбирался, как устроены и работают нейросети, как их обучают и в каких сферах применяют.
Нейросеть — это компьютерная система, которая имитирует работу нейронов в мозге человека. Она состоит из множества «нейронов», соединённых между собой и передающих информацию по цепочке. Нейросети используются во многих сферах для решения различных задач, в том числе для распознавания образов, обработки речи и прочего.
Нейросети перерабатывают терабайты данных и со временем выполняют поставленные задачи всё лучше. Раз за разом предлагая анализировать, генерировать и прогнозировать информацию по запросу, пользователь может обучить сеть выдавать нужный результат с наименьшими затратами времени.
Само обучение бывает контролируемым и глубоким. В первом случае специалисты по работе с данными загружают для обучения нейросети помеченные наборы данных, которые заранее содержат правильный ответ. В процессе обучения нейросеть накапливает знания, а затем получает новые данные, чтобы построить уже свои предположения.
Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.