Содержание статьи
Как создать искусственный интеллект: все, что нужно знать
Получение данных
После определения проблемы, которую необходимо решить, следующим шагом будет получение обучающих данных. Получить качественные данные проще, чем внести улучшения в модель ИИ. Независимо от того, структурированные или неструктурированные данные у вас есть, после сбора обучающих данных их необходимо очистить.
В связи с этим растет интерес бизнеса к отказу от готовых решений в области ИИ, и все больше компаний рассматривают возможность создания собственной системы ИИ. Несмотря на то, что инициирование проекта по созданию ИИ для вашей организации может показаться недоступным, создание систем ИИ не так сложно, как вы думаете.
Однако такой оценочный термин говорит не о скромных возможностях актуальных ИИ-решений, а об огромном потенциале того, что называют «Общим искусственным интеллектом». Границы его возможностей пока не видят даже самые смелые визионеры. Во многом это связано с тем, что само понятие «Общий искусственный интеллект», в международной терминологии Artificial General Intelligence (AGI) окончательно не сформировалось. Пока ни ведущие международные, ни российские эксперты и ученые не могу дать единого определения AGI. Более того, даже стратегия и тактика движения в сторону AGI у разработчиков, компаний и исследователей ИИ разная. Соучредитель и генеральный директор компании Anthropic Дарио Амодей считает, что масштабирование уже существующих ИИ-систем рано или поздно приведет к переходу количества в качество. Схожей позиции придерживаются и Сэм Альтман и Илья Суцкевер из OpenAI (мирового лидера в области ИИ).
Определение проблемы
Первым шагом в разработке программного обеспечения с искусственным интеллектом является определение проблемы или задачи, которую он может решить. Например, ChatGPT помогает людям писать контент, а Dall-E — создавать уникальные изображения. Какую задачу будет решать ваш искусственный интеллект?
Теперь, когда вы больше знаете о том, что такое искусственный интеллект и каковы его возможности, полезно понять, какие этапы включает в себя создание решения на основе искусственного интеллекта.
Важнейшими этапами создания искусственного интеллекта являются следующие:
Знаменитый французский ученый в области машинного обучения, компьютерного зрения и вычислительной нейробиологии Ян Лекун считает, что разработка AGI должна фокусироваться на способности ИИ не просто выполнять сформулированную человеком задачу, а самостоятельно достигать поставленной перед ним цели. Схожую точку зрения, выступая на форуме «Открытые инновации», высказал и руководитель центра прикладного искусственного интеллекта «Сколтеха» и ведущий научный сотрудник института искусственного интеллекта (AIRI) Евгений Бурнаев. «Над определением, что такое AGI, сломалась не одна тысяча копий. Я предпочитаю отталкиваться от способа решения сложных инженерных задач. Обычно они решаются так: большая задача декомпозируется на множество небольших, и человек, используя различные инструменты, последовательно решает их одну за другой, приближаясь решению общей. А хотелось бы так — есть, например, какая-то сложная задача по проектированию, человек ставит перед ИИ высокоуровневую цель, и машина самостоятельно или взаимодействуя с человеком достигает ее и получает результат, который человека удовлетворяет. Речь идет о создании так называемых когнитивных архитектур. Вероятно, такой ИИ можно будет назвать общим», — считает Бурнаев. Вместе с тем, любая разработка ИИ требует больших вычислительных мощностей, и недавно сторонник увеличения размера нейросетей и глава OpenAI Сэм Альтман заявил, что миру нужно больше вычислительной инфраструктуры для искусственного интеллекта. То есть, больше мощностей, больше энергии, больше центров обработки данных. Более того, по его мнению, нужно построить фабрики, специально предназначенные для производства чипов для работы с ИИ. Такой проект Альтман оценил в 5-7 трлн долларов и начал искать инвесторов для этого проекта. Эта сумма в 12-18 раз больше доходной части бюджета РФ в 2024 году. И независимо от того, найдет Альтман эти деньги или нет, такие инвестиции в «железо», какие делают OpenAI, Microsoft, Google, и другие BigTech гиганты, в России не может себе позволить ни бизнес, ни госструктуры.
Развернуть
Если вы успешно построили и обучили свою модель, пришло время ее развертывания. Разумеется, необходимо следить за ее работой, чтобы убедиться, что она соответствует ожиданиям. Вероятно, со временем потребуется дополнительное обучение для повышения точности и производительности модели искусственного интеллекта.
Написание алгоритмов
Алгоритмы — это математические инструкции, которые указывают системе искусственного интеллекта, что делать и как улучшить ее работу. Суть ИИ-решения заключается в алгоритмах, на которых оно основано. Выбрав язык программирования и платформу, вы можете написать свои собственные алгоритмы.
В этой статье мы рассмотрим, что потребуется вашей компании для создания системы искусственного интеллекта. Однако прежде чем мы расскажем о том, как создать ИИ, необходимо разобраться в различных типах искусственного интеллекта. Кроме того, существуют различные уровни возможностей искусственного интеллекта, которые следует учитывать перед началом работы с ним.
Обучение алгоритмов
Написать алгоритм недостаточно, необходимо также обучить его на собранных данных. Кроме того, для повышения точности модели ИИ может потребоваться получение дополнительных данных. В процессе обучения необходимо также корректировать алгоритмы для повышения их точности.
Прежде чем использовать данные для обучения системы искусственного интеллекта, их необходимо обработать и очистить. Очистка данных позволяет исправить или устранить ошибки в данных для повышения их качества. Использование качественных данных для обучения систем ИИ очень важно, иначе они не будут работать надежно.
Искусственный интеллект (ИИ) уже способен создавать высокореалистичное видео по голосовому запросу, общаться так, что его сложно отличить от человека, предсказывать поломки оборудования и находить оптимальные маршруты для доставки товаров из одной точки мира в другую. При этом в научной классификации современный ИИ, базирующийся на нейросетевых технологиях и машинном обучении, вполне официально называется «Слабым ИИ».
В настоящее время существует несколько моделей ИИ, в том числе популярная ChatGPT, которая стала одной из ключевых систем ИИ, вызвавших интерес общественности и компаний к технологиям ИИ. Однако использование готовой системы искусственного интеллекта, подобной ChatGPT, может оказаться не самым эффективным решением для удовлетворения уникальных потребностей вашей организации.
Искусственный сверхинтеллект
Если искусственный интеллект общего назначения был лишь гипотетическим, то системы сверхинтеллекта — еще более гипотетическими. Теоретически искусственный сверхинтеллект должен превосходить человеческий во всех возможных аспектах.