На чем программируют нейросети

0
16

Нейронные сети на Python: как всё устроено

Курс от GeekBrains для освоения Python и последующей работы с нейросетями

ChatGPT — это один из самых полезных инструментов для программистов. Нейросеть представляет собой чат-бота на основе ИИ. Она умеет писать код и объяснять, как работают его отдельные части. А ещё ChatGPT помогает находить ошибки в коде и, например, генерировать документацию.

Используем сверточную нейронную сеть, которая, как известно, направлена на работу с изображениями. В отличие от персептрона, рассматривающего все изображение сразу, сверточная нейронная сеть сканирует изображение по частям. Сверточные нейронные сети работают на основе фильтров, распознающих определенные характеристики изображения [7]. Фильтр представляет собой коллекцию кернелов — матрицу чисел, называемых весами, которая является результатом обучения и получения карты признаков «кернел-изображение». Фильтр перемещается вдоль изображения и определяет, присутствует ли искомая характеристика (кернел) на сканируемом участке изображения (рис. 1). Для получения ответа выполняется операция свертки, которая является суммой произведений элементов фильтра и матрицы входных сигналов (пикселей изображения).

Можно привести аналогичный пример с другим языком программирования. Фортран – один из первых языков высокого уровня, на котором написано множество программ и библиотек подпрограмм. Но сегодня программистами он не используется, зато широко распространен у физиков.

Snyk Code — это нейросеть для быстрого анализа кода на уязвимости. Она может проверять не только написанный вами код, но и обнаруживать проблемы в безопасности в сторонних библиотеках и фреймворках. Это может быть особенно полезно для больших проектов, где используется много внешних библиотек.

Распространенными задачами, для решения которых привлекаются нейронные сети, являются: классификация — разделение данных по значимым признакам, прогнозирование — предсказывание следующего шага, распознавание -анализ изображения (объекта) с дальнейшей классификацией [4, 5].

Tabnine — альтернатива Copilot. Эта сеть умеет подстраиваться под стиль и частые задачи конкретного программиста, чтобы в дальнейшем писать код, похожий на то, что человек написал бы сам. Для этого нейросеть постоянно анализирует, как вы объявляете переменные, описываете методы и тому подобное.

Нейросети становятся всё более крутыми и мощными, а значит, игнорировать их — всё равно что стать луддитом и выступать против внедрения станков в производство. Конечно, можно провозгласить нейронки изобретением сатаны и таким образом отмахнуться от них. Однако факт остаётся фактом: кто не использует их в работе, теряет карьерные возможности.

Производительность в определенной задаче улучшается не средствами программирования, а за счет данных. Например то, как успешно удается почтовому сервису отсеивать спам или как продвинулись системы распознавания речи с появлением голосовых помощников Алиса, Siri, Alexa и других.

Текст научной работы на тему «Программные среды для изучения основ нейронных сетей»

Рассматриваются примеры проектирования нейронных сетей в Colaboratory, в частности, решение задач распознавания и классификации изображений, прогнозирования. Показано, что для распознавания и классификации изображений может быть использована сверточная нейронная сеть, особенностью которой является получение карты признаков изображения с последующей сверткой. Приведены фрагменты программного кода для этапов подключения необходимых библиотек, загрузки датасетов, нормализации изображений, сборки нейронной сети и ее обучения.

Проведен анализ различных программных сред, которые могут быть использованы на лабораторных и практических занятиях по изучению и применению нейронных сетей. Выделен современный облачный сервис Google Colaboratory, рекомендуемый для обучения основам нейронных сетей благодаря наличию в нем предустановки библиотеки Tensorflow и библиотеки для работы на языке Python, бесплатного доступа к графическим процессорам, возможности написания и выполнения програм -много кода в браузере, а также отсутствию необходимости специальной настройки сервиса.

Сегодня IT-индустрия развивается небывалыми темпами, вместе с этим растет популярность машинного обучения. Оно оказывает огромное влияние на многие процессы в мире, поэтому все больше людей интересуется ее направлениями. Одно из них – нейронные сети. Они строятся по принципу организации и функционирования нашего мозга.

Никто не запрещает писать на других языках, но это будет дольше, сложнее, потребуется куда больше знаний, что, порой, нецелесообразно. И все же, даже используя Python, нужно иметь хотя бы базовое представление о том, как устроены нейросети. Из нашего материала вы узнаете, как это работает, почему именно Python и где можно обучиться этому языку.

но). Слой пулинга представляет собой нелинейное уплотнение карты признаков, при котором группа пикселей уплотняется до одного пикселя, проходя нелинейное преобразование. Полносвязный слой выполняет нелинейные преобразования извлеченных признаков и собственно реализует классификацию. Для решения проблемы переобучения используется метод Dropout(0.2), где 0.2 — доля нейронов, случайно выключаемых из процесса обучения.

Одна из разновидностей машинного обучения – обучение с учителем. Его суть заключается в том, что систему «тренируют». На первом этапе ей предлагают множество примеров определенной проблемы и желаемый вывод, таким образом, ее учат понимать прошлые данные. На втором этапе, когда система натренирована, ей предоставляют новые входные данные с целью самостоятельного предсказания выводов.

ЧИТАТЬ ТАКЖЕ:  Как можно заработать с помощью нейросетей

«Я много использовала ChatGPT для задач в data science — например, размечала с помощью неё данные. Обращалась к ней, когда нужно было разобраться со сложными алгоритмами, и иногда просила объяснить, как работает какая-нибудь функция из неизвестного для меня фреймворка. А ещё просила переписать скрипт с C++ на Python».

TensorFlow — библиотека для машинного обучения от компании Google с открытым исходным кодом. Применяется для построения и тренировки нейронной сети, решающей задачи нахождения и классификации образов. Библиотека построена на парадигме программирования потоков данных, позволяющей оптимизировать математические вычисления. Вычисления в TensorFlow выполняются при помощи графа потоков данных, узлы которого отображают операции, а ребра — потоки данных между узлами.

ChatGPT

Задача предсказания (прогноза), решаемая нейронной сетью, заключается в получении на выходном слое ожидаемого значения при подаче на входной слой соответствующих данных. В рассматриваемой задаче нет строгой математической функции, связывающей строку входных данных с выходными, поэтому и предлагается использовать нейронную сеть. Обученная нейронная сеть должна определить статистическое соответствие между входными и выходными данными — результат коррелирует с крайним левым столбцом входных данных. Обратное распространение ошибок заключается в подсчете подобной статистики при создании нейронной сети.

Исследовательские проекты. Большое число готовых примеров нейронных сетей на Python – это исследовательские проекты. При этом ученые, работающие над ними, чаще всего программистами не являются. Этот язык имеет низкий порог входа: никто не занимается написанием нейронных сетей на Python с нуля, так как это занимает много времени. Существуют библиотеки для нейронных сетей Python, которые уже написали специалисты. Так вокруг Питон сложилось целое сообщество по нейросетям. Если вы занимаетесь исследовательской деятельностью, то следуйте в этом вопросе примеру других.

Python – один из самых популярных языков программирования, с помощью которого можно решать самые разные задачи. Именно поэтому он так распространен среди IT-специалистов. На нем создают приложения, автоматизируют задачи в системном администрировании, а также пишут тесты и бэкенд web-приложений.

The paper describes the ways and methods of studying and constructing neural networks . It is shown that the study of the functioning guidelines of neural networks , their application for solving certain problems is possible only through practice. There is the analysis of various software environments that can be used in the laboratory and practical classes for the study and application of neural networks in the paper. Highlighted the modern cloud service Google Colaboratory, which is recommended for teaching the basics of neural networks due to the presence of a pre-installation of the Tensorflow library and a library for working in Python, free access to graphics processors, the ability to write and execute program code in a browser, and no need for special configuration of the service. Examples of designing neural networks in the Colaboratory are considered. In particular, solving recognition problems and image classification, predictive modeling. The authors show that a convolutional neural network can be used for image recognition and classification, a feature of which is obtaining the image features a map with subsequent convolution. There are chunks of code for the connecting phases the necessary libraries, loading data sets, normalizing images, assembling a neural network, and its training, in the paper. The solving of the forecasting problem is considered on the example of a feed-forward neural network with an algorithm for backpropagation of errors in the learning process, the essence of which is to obtain the expected value at the output layer when the corresponding data is fed to the input layer. Backpropagation of errors consists of adjusting the weights that give the greatest correlation between the input dataset and its corresponding result.

«Copilot может генерировать большие участки кода по текстовому описанию. Я использовала его, когда нужно было, например, написать код для соединения разных сервисов с СУБД (MongoDB и Redis). До этого мне не приходилось работать с ними, поэтому нейросеть писала всё сама. И хотя функции нужно было написать довольно базовые, радует то, что не пришлось долго изучать документацию и тратить на это время».

Рассмотрим пример создания спам-детектора. Вы можете создать его, основываясь на интуиции и вручную подбирая правила его работы. Например, «содержит слово подарок» или «имеет слово деньги». Такая система может функционировать. Однако подобрать верные шаблоны и создать успешно работающий детектор, основываясь лишь на интуиции, очень сложно.

Наиболее распространенным языком программирования для искусственных нейросетей является Python. Почему именно нейронные сети на Python получили такую популярность, несмотря на наличие множества других языков программирования? IT-специалисты часто сходятся во мнении, отвечая на этот вопрос, и выделают несколько причин.

Помимо Python, для написания программного кода, реализующего нейронную сеть, используются языки R, C Sharp, C++, Haskell, Java, Go и Swift. По-прежнему применяются такие пакеты прикладных программ, как MatLab и Deductor. Однако их использование ограничено отсутствием выбора видов и архитектур нейронных сетей.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь