Кто работает с нейросетями

0
23

Нетехнические профессии, связанные с нейросетями: искусственный интеллект за пределами программирования

Нейросеть — аналог мозга?

Но разработки в этом направлении ведутся — правда, пока такие проекты находятся на стадии исследований. И даже с небольшим по сравнению с мозгом количеством нейронов нейросети могут достигать поразительных результатов в обучении. Некоторые даже проходят тест Тьюринга, но с оговоркой: сознания у них нет, просто они хорошо научились имитировать его наличие. Иногда даже человек не всегда способен распознать в своем собеседнике нейронную сеть.

Менеджер проектов, связанных с ИИ, – это управленческая должность, которая не предполагает глубоких знаний в области создания нейросетей. Главная задача – понять, как разрабатываемый продукт может решить проблемы пользователей. Затем менеджер определяет задачи, формирует команду, раздает полномочия и обязанности, следит за достижением целей и при необходимости корректирует работу.

ИИ помогает улучшить процесс продаж, но при этом не может полностью заменить менеджера. Нейросети становятся полезным инструментом для анализа, прогнозирования, улучшения пользовательского опыта. Опишем несколько сценариев, как менеджеры по продажам могут использовать возможности искусственного интеллекта.

Для эффективного обучения нужно много повторений. Иначе нейронная сеть будет работать неточно — ведь входные данные могут серьезно различаться, а она окажется натренирована только на один возможный вариант. Поэтому обучение проводится в несколько итераций и эпох.

Нейросеть повторяет этот же принцип, но программно. Нейроны — это программные объекты, внутри которых хранится какая-то формула. Они соединены синапсами — связями, у которых есть веса: некоторые числовые значения. Веса отражают накопленную нейросетью информацию, но сами по себе, в отрыве от сети, не несут информационной ценности.

Структура. Нейросеть состоит из искусственных нейронов, которые соединяются между собой. У самой примитивной нейронной сети один слой нейронов, у более сложных — несколько. Часто каждый слой занимается своей задачей, например, один распознает, другой преобразует.

Перцептроны — Это классические нейронные сети, изначально однослойные, позже многослойные. Сейчас используются в основном для вычислений. Сверточные нейронные сети — Это многослойные сети, которые состоят из чередующихся сверточных и субдискретизирующих слоев и предназначены специально для работы с изображениями. Рекуррентные нейронные сети Их особенность в возможности последовательно обрабатывать цепочки данных и «запоминать» предыдущую информацию. Поэтому их применяют для работы с изменяющимися сведениями или длинными цепочками данных, например рукописными текстами. Генеративные нейронные сети Предназначены для создания контента. Иногда используются генеративно-состязательные нейросети — связка из двух сетей, где одна создает контент, а другая оценивает его качество.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая создает текст

Искусственный интеллект – это профессиональный инструмент не только для разработчиков. Вокруг нейросетей вырастают новые направления работы и специалисты. В статье мы рассмотрим несколько перспективных и уже существующих профессий, которые используют возможности ИИ или могут подключить их, чтобы оптимизировать свой труд.

Нетехнические направления, связанные с ИИ

Текст, полностью написанный языковой моделью, подходит для простых задач: описание карточки товара, текст на разводящей странице, пост с формальным объявлением об изменениях в работе компании. Если контент должен быть эмпатичным и вовлекающим, без редактуры со стороны человека не обойтись. Абстрактность – один из главных недостатков сгенерированных текстов. Они являются резюме всего, что написали люди по выбранной теме.

Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.

Веса. Веса — числовые значения внутри синапсов нейронов. Нейросеть подсчитывает их самостоятельно в ходе обучения. Когда нейронная сеть сталкивается в ходе обучения с каким-то признаком, который нужно запомнить, она пересчитывает веса. При этом доподлинно неизвестно, какие именно числовые значения отвечают за те или иные признаки — и как именно признаки в них преобразуются.

Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.

В основе искусственной нейронной сети лежит устройство нервной ткани человека. Она состоит из нервных клеток, связанных между собой длинными отростками. В клетках происходят нервные импульсы, они передаются по отросткам в другие клетки. Таким образом нервная ткань обрабатывает или генерирует информацию. Сами импульсы очень сложно расшифровать: это не понятные человеку данные, а набор слабых электрических токов, которые нейроны воспринимают как информацию.

Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь