Кто придумал нейросеть

0
14

Крестный отец нейросетей» уволился из Google

Что нейросети могут уже сегодня

Нейронные сети используются почти во всех голосовых приложениях. При этом они научились распознавать речь не только взрослых, но и детей, у которых она не всегда внятная, а также людей с акцентами и необычными голосами. Но недостаточно просто расшифровать звук — виртуальный помощник должен еще правильно понять его смысл. Для Алексы, например, инженеры Amazon определили около 80 различных намерений: позвонить кому-нибудь, воспроизвести музыку, дать информацию о пробках на дороге, выбрать радиостанцию. Как только помощник распознает намерение, сервер Amazon сможет выполнить запрошенную задачу.

В своей книге «Как учится машина. Революция в области нейронных сетей и глубокого обучения» Ян Лекун рассказывает, как работают нейросети и где применяются. Автор — лауреат премии Тьюринга, аналога Нобелевской премии в области вычислительной техники. Его называют крестным отцом нейронных сетей. Обзор будет полезен тем, кто пользуется достижениями нейросетей и хочет узнать о них больше, не погружаясь в сложные технические подробности.

Активное развитие нейросетей продолжилось уже в конце XX века. В 1986 году Дэвид Румельхарт, Джеффри Хинтон и Рональд Уильямс представили метод обратного распространения ошибки, который стал основным механизмом для глубокого обучения нейронных сетей. В результате продолжились исследования искусственного интеллекта.

Кроме того, проект отличается собственным стилем и созданием более качественных изображений высокого уровня детализации, реализма и креативности с использованием текстовых подсказок. Проект стал возможным благодаря обучению модели искусственного интеллекта на огромных объемах данных и изображений.

Вместе с Дэвидом Румелхартом и Рональдом Дж. Уильямсом Хинтон написал одну из самых цитируемых статей в области исследования ИИ – «Изучение представлений путем обратного распространения ошибок». Статья, в которой популяризировался метод обратного распространения для обучения многоуровневых нейронных сетей, была опубликована в 1986 году.

Нейронные сети используются в аппаратах для рентгена, магнитно-резонансной и компьютерной томографии (МРТ и КТ) для обнаружения опухолей, а еще в ревматологии и при протезировании. Они снижают стоимость диагностики и затраты времени на нее, помогая врачу не пропустить опухоль, сосредоточить внимание на сложных случаях.

И самое важное: искусственные нейросети плохо предвидят последствия своих действий, в отличие от человека. Если мы видим фотографию, на которой перед маленькой девочкой стоит торт с зажженными свечами, мы с легкостью угадаем, что произойдет дальше. Машине это пока недоступно, потому что она не обладает человеческим опытом и здравым смыслом.

Благодаря нейросетям, машинные переводы теперь не уступают тем, которые сделаны человеком, а иногда и превосходят его. В 2019 году в конкурсе GLUE (General Language Understanding Evaluation), который проверяет понимание языка, человек оказался только на четвертом месте. В тройку лидеров вошли RoBERTa от Facebook (признана экстремистской организацией и запрещена на территории РФ. — Прим. ред.), XLNet от Google и MT-DNN от Microsoft.

Итоги

Первую обучающуюся машину создал в 1957 году американский психолог Фрэнк Розенблатт в авиационной лаборатории Корнеллского университета в Буффало, США. Ученый вдохновился работой нейронов в человеческом мозге и по аналогии сделал искусственную нейросеть, которую назвал перцептрон.

Люди с творческими профессиями и помогающими специальностями, например психологи, детские воспитатели, учителя и консультанты, имеют больше шансов сохранить работу. Искусственный интеллект еще не скоро сможет заменить человеческий опыт. По мнению Яна Лекуна, современным нейронным сетям не хватает разума. «Когда дело доходит до создания действительно умных машин, способных разрабатывать стратегии и хорошо разбираться в мире, у нас даже нет ингредиентов для рецепта», — жалуются ученые-коллеги Яна Лекуна.

Нейросети меняют общество и экономику. Как и любая технологическая революция, они способствуют появлению новых профессий и уничтожению старых. Многие специалисты со временем могут оказаться ненужными, их заменят роботы. Это пугает, но дальновидные экономисты, которые специализируются на вопросах влияния технологий на экономику, настроены оптимистично.

Искусственные нейронные сети окружают нас повсюду: Алиса расскажет погоду на день, навигатор построит быстрый маршрут до работы, а умная лента покажет подборку новостей по интересам. Благодаря нейросетям любой желающий может почувствовать себя большим художником или писателем, даже если не умеет рисовать и красиво выражать мысли. Тем не менее для многих они по-прежнему остаются загадкой. Как и словосочетание Big Data, о котором мы уже как-то рассказывали.

ЧИТАТЬ ТАКЖЕ:  Как меня видит нейросеть по фото бесплатно

Нейросети могут прогнозировать спрос на разные продукты и предсказывать изменение цен акций. Например, они помогают французской государственной энергетической компании EDF прогнозировать потребление энергии. С этими знаниями компания эффективнее управляет производительностью электростанций и распределяет ресурсы с минимальными потерями. В маркетинге нейросети используются для изучения интереса людей к тому или иному контенту:к примеру, подскажут, на какой рекламный баннер будут реагировать чаще.

Например, американский академик Эрик Бриньолфссон, изучающий производительность труда, указывает на то, что новые технологии начинают применяться не сразу после изобретения, процесс их внедрения может занимать от 15 до 20 лет. Этого времени достаточно, чтобы люди адаптировались. Например, первый массовый персональный компьютер был выпущен IBM в 1981 году, но повсеместно его стали использовать только с середины 1990-х годов.

Как становится понятно из статьи, нельзя назвать имя одного конкретного человека, кто придумал искусственную нейросеть. Это коллективное многолетнее достижение научного сообщества. На сегодняшний день нейронные сети активно применяются в различных сферах – автомобильной промышленности, медицине, финансовой деятельности, игровой индустрии, рекламе и маркетинге. Однако искусственный интеллект еще далек от совершенства. Поэтому можно с утверждением сказать, что история развития нейросетей еще только начинается.

ChatGPT – одна из самых популярных в мире моделей ИИ, которая обучается понимать и генерировать текст в разных стилях и поддерживать диалоги с пользователями. Нейронная сеть, созданная на архитектуре GPT (Generative Pre-trained Transformer), разработана группой исследователей и инженеров компании OpenAI.

Кто придумал Chatgpt

Но надо сказать, что Хинтон с коллегами были не первыми, кто предложил этот подход. Первую обучаемую нейросеть еще в 1957 году продемонстрировал психолог Корнеллского университета Фрэнк Розенблатт. Но та сеть была одноуровневой (ограничена в количестве шаблонов обучения), а у Хинтона – многоуровневая. Именно поэтому его и называют не отцом, а «Крестным отцом ИИ», наставником и воспитателем, не родившим, а развившим нейросети до современного уровня.

Аналогично чтобы построить автомобиль, который может ездить самостоятельно, сначала нужно собрать данные от опытного водителя. Для этого каждую долю секунды надо записывают положение автомобиля на дороге и то, как водитель поворачивает руль, чтобы машина оставалась в пределах полосы. В результате за час наблюдений ученые получают 36 000 положений автомобиля и углов поворота руля. На этой информации нейросеть потом учится.

«Магия» обучения заключается в том, что обученная машина способна выйти за рамки того, что ей показывали. Она может правильно определить, что изображено на картинке, которую она видит впервые. Или принять верное решение на дороге, даже если сталкивается с новой помехой.

С появлением больших объемов данных, мощных вычислительных ресурсов и улучшенных алгоритмов, нейронные сети особенно быстро стали развиваться в последнее десятилетие. Из ученых, кто придумывает нейросеть в 2023 году, можно выделить следующие имена: Джеффри Хинтон, Андрю Янг, Джейф Дин, Илья Суцкевер. Ученые активно занимаются исследованием искусственных нейронных сетей и вносят весомый вклад в развитие высоких технологий будущего.

Над искусственным интеллектом британо-канадский когнитивный психолог и специалист по информатике Джеффри Хинтон, родившийся 6 декабря 1947 года, работал всю жизнь. Он один из тех, кто стоял у истоков искусственного разума, развивая его с 1970-х годов (сразу после окончания Кембриджа). Он является автором и соавтором более 200 рецензируемых публикаций.

Проработав в Google более десяти лет, доктор 76-летний Джеффри Хинтон решил покинуть компанию. И дело не только в том, что человек решил уйти на пенсию. Он не стал делать тайну из реальных причин ухода. Наоборот, он подчеркивает, что виной тому сам искусственный интеллект (ИИ), над которым доктор работал много лет. Точнее, те опасности, которые он несет. Словом, г-н Хинтон настроен весьма пессимистично относительно судьбы человечества и воинственно по отношению к ИИ.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь