Конечный набор входных сигналов по которым происходит обучение нейросети это

0
21

Нейронные сети, перцептрон

Источники информации

Во втором случае мы также можем кодировать все значения двоичными весами, но это будет нецелесообразно, т.к. набор возможных значений будет слишком неравномерным. В этом случае более правильным будет установка в соответствие каждому значению своего веса, отличающегося на 1 от веса соседнего значения. Так, число 3 будет соответствовать возрасту 50-59 лет. Таким образом возраст будет закодирован числами в диапазоне [0..4].

Нейронные сети обратного распространения – это мощнейший инструмент поиска закономерностей, прогнозирования, качественного анализа. Такое название – сети обратного распространения (back propagation) они получили из-за используемого алгоритма обучения, в котором ошибка распространяется от выходного слоя к входному, т. е. в направлении, противоположном направлению распространения сигнала при нормальном функционировании сети.

Чтобы обучать эту функцию, сначала надо выбрать функцию ошибки, которую потом можно оптимизировать градиентным спуском. Число неверно классифицированных примеров не подходит на эту кандидатуру, потому что эта функция кусочно-гладкая, с массой разрывов: она будет принимать только целые значения и резко меняться при переходе от одного числа неверно классифицированных примеров к другому. Поэтому использовать будем другую функцию, так называемый критерий перцептрона: [math]E_P(w) = -\sum_ y(x)(\sigma(w^T \cdot x))[/math] , где [math]M[/math] — множество примеров, которые перцептрон с весами [math]w[/math] классифицирует неправильно.

Его ключевая особенность состоит в том, что каждый S-элемент однозначно соответствует одному A-элементу, все S-A связи имеют вес, равный +1, а порог A элементов равен 1. Часть однослойного перцептрона, не содержащая входы, соответствует искусственному нейрону, как показано на картинке. Таким образом, однослойный перцептрон — это искусственный нейрон, который на вход принимает только 0 и 1.

После обучения сети, то есть когда сеть выдает корректные результаты для всех входных сигналов из обучающей выборки, ее можно использовать на практике. Однако прежде чем сразу использовать нейронную сеть, обычно производят оценку качества ее работы на так называемой тестовой выборке.

Классическое определение говорит нам, что нейронной сетью называется некоторая последовательность нейронов, объединённых между собой синапсами. Если программа имеет структуру нейронной сети, появляется возможность на машинном уровне проанализировать входные данные с запоминанием результата.

Для построения искусственной нейронной сети будем использовать ту же структуру. Как и биологическая нейронная сеть, искусственная состоит из нейронов, взаимодействующих между собой, однако представляет собой упрощенную модель. Так, например, искусственный нейрон, из которых состоит ИНС, имеет намного более простую структуру: у него есть несколько входов, на которых он принимает различные сигналы, преобразует их и передает другим нейронам. Другими словами, искусственный нейрон — это такая функция [math]\mathbb^n \rightarrow \mathbb[/math] , которая преобразует несколько входных параметров в один выходной.

В основе перцептрона лежит математическая модель восприятия информации мозгом. Разные исследователи по-разному его определяют. В самом общем своем виде (как его описывал Розенблатт) он представляет систему из элементов трех разных типов: сенсоров, ассоциативных элементов и реагирующих элементов.

Что такое нейронная сеть? Базовая информация о нейронных сетях

Хорошим примером биологической нейронной сети является человеческий мозг. Наш мозг — сложнейшая биологическая нейронная сеть, которая принимает информацию от органов чувств и каким-то образом ее обрабатывает (узнавание лиц, возникновение ощущений и т.д.). Мозг же, в свою очередь, состоит из нейронов, взаимодействующих между собой.

Если обучать сеть, используя только один входной сигнал, то сеть просто «запомнит правильный ответ», а как только мы подадим немного измененный сигнал, вместо правильного ответа получим бессмыслицу. Мы ждем от сети способности обобщать какие-то признаки и решать задачу на различных входных данных. Именно с этой целью и создаются обучающие выборки.

В первом случае мы видим, что у больного может быть несколько факторов риска одновременно. В таком случае нам необходимо использовать такое кодирование, при котором отсутствует ситуация, когда разным комбинациям факторов соответствует одно и то же значение. Наиболее распространен способ кодирования, когда каждому фактору ставится в соответствие разряд двоичного числа. 1 в этом разряде говорит о наличии фактора, а 0 о его отсутствии. Параметру нет можно поставить в соответствии число 0. Таким образом для представления всех факторов достаточно 4-х разрядного двоичного числа. Таким образом число 10102 = 1010 означает наличие у больного гипертонии и употребления алкоголя, а числу 00002 соответствует отсутствие у больного факторов риска. Таким образом факторы риска будут представлены числами в диапазоне [0..15].

Представить принцип работы нейросети можно, не имея конкретных навыков. Общая схема или алгоритм следующий: — на входной слой нейронов происходит поступление определённых данных; — информация передаётся с помощью синапсов следующему слою, причём каждый синапс имеет собственный коэффициент веса, а любой следующий нейрон способен иметь несколько входящих синапсов; — данные, полученные следующим нейроном, — это сумма всех данных для нейронных сетей, которые перемножены на коэффициенты весов (каждый на свой); — полученное в итоге значение подставляется в функцию активации, в результате чего происходит формирование выходной информации; — информация передаётся дальше до тех пор, пока не дойдёт до конечного выхода.

ЧИТАТЬ ТАКЖЕ:  Что нейросеть

В общем случае задача обучения НС сводится к нахождению некой функциональной зависимости Y=F(X) где X – входной, а Y – выходной векторы. В общем случае такая задача, при ограниченном наборе входных данных, имеет бесконечное множество решений. Для ограничения пространства поиска при обучении ставится задача минимизации целевой функции ошибки НС, которая находится по методу наименьших квадратов:

Искусственный интеллект и искусственные нейронные сети становятся всё популярнее. В этой статье мы рассмотрим основные разновидности нейронных сетей и поговорим о том, как они работают и где применяются. Что включает в себя понятие нейронных сетей, как происходит развитие нейронной сети с точки зрения их эксплуатации в реальной жизни. Немного поговорим и про технологии нейронных сетей.

Обучение нейронной сети

В сетях прямого распространения выход сети определяется входным сигналом и весовыми коэффициентами при искусственных нейронах. В сетях с обратными связями выходы нейронов могут возвращаться на входы. Это означает, что выход какого-нибудь нейрона определяется не только его весами и входным сигналом, но еще и предыдущими выходами (так как они снова вернулись на входы).

Задача обучения перцептрона — подобрать такие [math]w_0, w_1, w_2, \ldots, w_n[/math] , чтобы [math]sign(\sigma(w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n))[/math] как можно чаще совпадал с [math]y(x)[/math] — значением в обучающей выборке (здесь [math]\sigma[/math] — функция активации). Для удобства, чтобы не тащить за собой свободный член [math]w_0[/math] , добавим в вектор $x$ лишнюю «виртуальную размерность» и будем считать, что [math]x = (1, x_1, x_2, \ldots, x_n)[/math] . Тогда [math]w_0 + w_1 \cdot x_1 + w_2 \cdot x_2 + \ldots + w_n \cdot x_n[/math] можно заменить на [math]w^T \cdot x[/math] .

Само обучение нейронной сети можно разделить на два подхода: обучение с учителем [на 28.01.19 не создан] и обучение без учителя [на 28.01.19 не создан] . В первом случае веса меняются так, чтобы ответы сети минимально отличались от уже готовых правильных ответов, а во втором случае сеть самостоятельно классифицирует входные сигналы.

Несмотря на большое разнообразие вариантов нейронных сетей, все они имеют общие черты. Так, все они, так же, как и мозг человека, состоят из большого числа связанных между собой однотипных элементов – нейронов, которые имитируют нейроны головного мозга. На рис. 1 показана схема нейрона.

Простейший метод градиентного спуска, рассмотренный выше, очень неэффективен в случае, когда производные по различным весам сильно отличаются. Это соответствует ситуации, когда значение функции S для некоторых нейронов близка по модулю к 1 или когда модуль некоторых весов много больше 1. В этом случае для плавного уменьшения ошибки надо выбирать очень маленькую скорость обучения, но при этом обучение может занять непозволительно много времени.

Но это далеко не все варианты классификации и виды нейронных сетей. Также их делят: 1. В зависимости от типов нейронов: — однородные; — гибридные. 2. В зависимости от метода нейронных сетей по обучению: — обучение с учителем; — без учителя; — с подкреплением. 3. По типу входной информации нейронные сети бывают: — аналоговые; — двоичные; — образные. 4. По характеру настройки синапсов: — с фиксированными связями; — с динамическими связями.

Просто так передавать взвешенную сумму [math]net[/math] на выход достаточно бессмысленно — нейрон должен ее как-то обработать и сформировать адекватный выходной сигнал. Для этих целей используют функцию активации, которая преобразует взвешенную сумму в какое-то число, которое и будет являться выходом нейрона. Функция активации обозначается [math]\phi(net)[/math] . Таким образом, выходов искусственного нейрона является [math]\phi(net)[/math] .

Нейронные сети применяются для решения множества разных задач. Если мы говорим о простых проектах, то с ними справляется обычная компьютерная программа, если говорить об усложнённых задачах, требующих решения уравнений и прогнозирования, применяется компьютерная программа, поддерживающая статические методы обработки. Есть и совсем сложные задачи, то же распознавание образов. Здесь нужен другой подход, ведь в голове человека все эти процессы проходят неосознанно (при распознавании и запоминании образов человек делает это, если можно так сказать, сам по себе, то есть он не управляет соответствующими процессами в мозгу).

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь