Содержание статьи
Кто придумал нейросеть
Распознавание речи
Например, чтобы научить нейросеть управлять беспилотным автомобилем, нужно смоделировать поведение человека-водителя, который во время движения должен распознавать дорожные знаки и разметку, реагировать на сигналы светофора, прогнозировать поведение других водителей и замечать людей, которые оказались на дороге. Для решения каждой из этих задач в беспилотном автомобиле работает отдельная нейросеть [3] .
Создание Midjourney и его уникальной возможности генерации изображений на основе текстовых подсказок представляет собой интересное развитие в области искусственного интеллекта и цифрового творчества. Инициатором этого проекта стал Дэвид Хольц – выдающийся математический гений и предприниматель-ренегат, чьи достижения в области технологии трехмерного управления движением внесли значительный вклад в цифровую индустрию. Он является техническим директором и соучредителем компании Leap Motion, базирующейся в Сан-Франциско.
Самое любопытное в новом этапе развития нейросетей – они перестали быть явлением только научного мира и стали частью жизни современного общества. Нейросети создают произведения искусства, пишут музыку и тексты, выступают в качестве собеседника и помощника, заменяют поисковые системы и голосовых ассистентов.
Например, логистической компании нужно построить самые быстрые маршруты. Если в качестве исходных данных будет использована информация о маршрутах, которые строили сами водители, нет смысла подключать нейросеть. При выборе они будут опираться на другие факторы. Если использование нейросетей всё же уместно, то для решения основной задачи может использоваться не одна нейросеть, а сразу несколько. В этом случае большая задача разбивается на много мелких.
Нейросеть, еще называемая искусственной нейронной сетью или ИНС, – это математическая модель, программа или устройство, построенные по принципу биологической сети нейронов. Другими словами – по тому же принципу, по которому работает человеческий мозг. В основе каждой нейросети – огромное количество простых процессоров, представляющих собой искусственные нейроны. И, хотя по отдельности каждый процессор очень простой в сравнении с привычными компьютерами, их общая сеть с управляемым взаимодействием позволяет решать сложные задачи.
С появлением больших объемов данных, мощных вычислительных ресурсов и улучшенных алгоритмов, нейронные сети особенно быстро стали развиваться в последнее десятилетие. Из ученых, кто придумывает нейросеть в 2023 году, можно выделить следующие имена: Джеффри Хинтон, Андрю Янг, Джейф Дин, Илья Суцкевер. Ученые активно занимаются исследованием искусственных нейронных сетей и вносят весомый вклад в развитие высоких технологий будущего.
История
Следующим важным этапом стало создание перцептрона Фрэнком Розенблаттом в 1957 году. Это была первая искусственная нейросеть, способная обучаться. Она стала предшественником многих современных алгоритмов машинного обучения. Однако в те времена не хватало мощности компьютеров, чтобы проводить полноценные исследования, и проект по разработке ИИ был отложен на несколько десятилетий.
На этом этапе искусственный нейрон мог оперировать только с бинарными сигналами (ноль и единица), то есть мало отличался от обычного компьютера. Тогда ученые пришли к выводу, что нужно «научить» нейросети обрабатывать не только бинарные, но и аналоговые, непрерывные сигналы. Так появился новый вид обучения – градиентный спуск по поверхности ошибки. Позднее он лег в основу метода обратного распространения ошибки, который используется до сих пор.
Кроме того, проект отличается собственным стилем и созданием более качественных изображений высокого уровня детализации, реализма и креативности с использованием текстовых подсказок. Проект стал возможным благодаря обучению модели искусственного интеллекта на огромных объемах данных и изображений.
Например, нейросеть должна распознать рукописные цифры от 0 до 9. Для этого сначала ей дают обучающие примеры, затем она переходит к самообучению. Сеть выдает предположение о том, какая цифра сейчас демонстрируется, затем анализирует этот вариант и вычисляет разницу между реальной цифрой и своей версией. Это значение используется для корректировки нейронов внутри сети до тех пор, пока распознавание не станет максимально точным.
Однако искусственный интеллект был придуман задолго до сегодняшних технологий. Первыми, кто придумал нейросеть, были американский математик Уоррен Маккаллок и нейрофизиолог Уолтер Питтс. В 1943 году эти ученые создали первую модель биологического нейрона, что стало отправной точкой для развития нейронных сетей в будущем.
Нейросети сейчас в тренде и кажутся явлением исключительно нашего времени, как смартфоны или умная техника. Но на самом деле они появились еще в 1940-е годы и прошли путь от простого перцептрона до современного ИИ, способного справиться с любой задачей. Редакция ZOOM.CNews изучила историю и принцип работы нейросетей.
Обработка естественного языка
Принцип работы перцептрона был прост: в него загружали определенный набор правил для распознавания информации, а затем показывали карточку, например, с буквой «А». Если устройство давало верный ответ, то переходили к следующей карточке, если же происходил сбой, то в правила вручную вносились коррективы, и обучение продолжалось.
Толчком для развития глубокого обучения в начале 2000-х стало распространение интернета. До этого для полноценного обучения нейросетей ученым банально не хватало объема информации в открытом доступе. Чтобы сеть могла самообучаться и выполнять сложные задачи, ей нужны огромные массивы данных.
Рекуррентные нейросети нужны для языкового моделирования, создания текстов, автоматического перевода, распознавания речи и других задач. Именно они применяются в большинстве популярных чат-ботов: например, в ChatGPT и его российском аналоге SistemmaGPT. Также на базе таких сетей работают сервисы для создания текстов вроде Балабобы и генераторы изображений Midjourney, DALL-E, Dream и Kandinsky 2.1.
Midjourney – это своего рода социальная сеть, где пользователи могут создавать и делиться уникальными произведениями искусства, сгенерированными по запросу нейросетью. Основное отличие Midjourney от похожих проектов DALL-E 2 от OpenAI заключается в том, что к боту можно получить доступ через интернет-протокол передачи голоса, социальную платформу мгновенных сообщений Discord, а не через сайт или мобильное приложение.
Активное развитие нейросетей продолжилось уже в конце XX века. В 1986 году Дэвид Румельхарт, Джеффри Хинтон и Рональд Уильямс представили метод обратного распространения ошибки, который стал основным механизмом для глубокого обучения нейронных сетей. В результате продолжились исследования искусственного интеллекта.
Однако в 1974 году независимо друг от друга Александр Галушкин и Пол Вербос описали метод обратного распространения ошибки. Он подразумевает, что сигнал об ошибке идет не от входов, а от выходов сети. Это позволяло решить задачу обучения многослойных сетей. К тому же теперь они могли совершать операцию «исключающее ИЛИ».