Когда говорят об искусственном интеллекте можно услышать о процессе обучения нейронной сети

0
12

Как работают искусственный интеллект, машинное и глубокое обучение

Требования

Нейронные сети не панацея, но они прекрасно справляются со сложными данными. Google и Microsoft используют нейронные сети, чтобы обучать свои приложения перевода, поскольку перевод языков — это сложно. Мы часто видели плохие машинные переводы, но нейронные сети обучаются улучшать эти переводы, исходя из правильных переводов, с течением времени. То же самое происходит с переводом речи в текст. После того как была представлена нейронная сеть, работающая с Google Voice, ошибки в переводах снизились на 49%. Эти системы не идеальны, но они работают над собой, и это главное.

Затем выводы сравниваются с известными данными. Например, скажем, вы хотите обучить компьютер распознавать изображение собаки. Вы пропускаете миллионы изображений собак через сеть, чтобы увидеть, какие изображения она решит принять похожими на собак. Затем человек подтверждает, какие изображения на самом деле являются собаками. Система отдает предпочтение пути в нейронной сети, который привел к правильному ответу. Со временем и спустя миллионы итераций, эта сеть в конечном итоге повысит точность своих результатов.

Однако научить автомобиль принимать решения в чрезвычайных ситуациях гораздо сложнее: проблема в том, что и самому человеку трудно понять, как именно надо поступать в том или ином экстренном случае. Поэтому человек не может показать алгоритмам примеры хорошего и плохого поведения для таких случаев.

Область применения искусственного интеллекта включает в себя множество методов, используемых для решения различных проблем. Эти методы охватывают генетические алгоритмы, нейронные сети, глубокое обучение, алгоритмы поиска, системы, основанные на правилах, и само машинное обучение.

Такое сравнение действительно часто используется. Нейронная сеть — это последовательность слоев, каждый из которых, в свою очередь, состоит из нейронов, и каждый выполняет свою роль. Есть нейроны (или структуры нейронов), которые учатся выделять важные элементы на изображениях, например шерсть у кошки или собаки; есть те, которые учатся делать выводы, исходя из выделенных элементов — например, если у животного длинные лапы, то, скорее всего, это собака. Эти нейроны объединяются в группы (слои), а они превращаются в единую искусственную нейронную сеть.

Искусственный интеллект и машинное обучение – это области компьютерных наук, сосредоточены на создании программного обеспечения, которое анализирует, интерпретирует и понимает данные комплексным образом. Ученые в этих областях пытаются запрограммировать компьютерную систему для выполнения сложных задач, связанных с самообучением. Хорошо разработанное программное обеспечение будет выполнять задачи так же быстро, как человек, или даже быстрее.

Искусственный интеллект находит применение во всех отраслях. Искусственный интеллект можно использовать для оптимизации цепочек поставок, прогнозирования спортивных результатов, улучшения сельскохозяйственных результатов и персонализации рекомендаций по уходу за кожей.

Допустим, есть несколько тысяч фотографий кошек и несколько тысяч — собак. Эти данные можно загрузить в алгоритм и заставить его «учиться» отличать кошек от собак, «ругая» за ошибки в классификации и «поощряя» за правильные ответы. В зависимости от количества и качества вводных данных, а также от сложности используемого алгоритма после некоторого количества итераций с «наказанием» и «поощрением», получается обученный алгоритм, которой с разным качеством умеет отличать кошек и собак.

И все же можно как-то сравнить процессы внутри нейросети с деятельностью мозга?

Процесс обучения алгоритма во многом напоминает процесс обучения человека. Как мы совершаем ошибки и учимся на них (например, что не стоит засовывать руку в кипящую воду), так и алгоритмы, использующие машинное обучение, совершают ошибки, за что получают штраф.

В рамках машинного обучения методы делятся на две большие категории: обучение под руководством и обучение без наблюдения. Алгоритмы машинного обучения под наблюдением учатся решать проблемы, используя значения данных, помеченные как ввод и вывод. Обучение без наблюдения носит скорее исследовательский характер и направлено на выявление скрытых закономерностей в немаркированных данных.

Машинное обучение — это широкий термин, который охватывает все моменты, когда вы пытаетесь научить машину улучшаться самостоятельно. В частности, это относится к любой системе, в которой производительность компьютера при выполнении задачи становится лучше только за счет большего опыта выполнения этой задачи.

Причина того, что базовые телефонные возможности можно считать искусственным интеллектом, в том, что на самом деле есть два типа ИИ. Слабый или узконаправленный ИИ описывает любую систему, предназначенную для выполнению узкого списка задач. К примеру, Google Assistant или Siri, являясь довольно мощными ИИ, все же выполняют довольно узкий список задач. Они получают голосовые команды и возвращают ответы, либо запускают приложения. Исследования в области искусственного интеллекта питают эти функции, но они считаются «слабыми».

ЧИТАТЬ ТАКЖЕ:  Какие задачи решает нейросеть

В подобных случаях вы не получите полную выгоду от машинного обучения, если не будете часто использовать эту функцию. Когда вы откроете музыкальное приложение Google впервые, рекомендации будут, скорее всего, мимо кассы. Но чем больше вы будете его использовать, тем лучше будут предложения. В теории, по крайней мере. Машинное обучение тоже не панацея. Машинное обучение более расплывчатое понятие, чем нейронные сети, но из него также следует, что программное обеспечение, которое вы используете, будет опираться на ваши отзывы, чтобы улучшать свою производительность.

И хотя смысл может быть весьма расплывчатым, практические исследования в области искусственного интеллекта настолько полезны, что, вероятно, уже вошли в вашу повседневную жизнь. Каждый раз, когда ваш телефон автоматически запоминает, где вы припарковались, распознает лица на ваших фотографиях, получает поисковые предложения или автоматически группирует все ваши снимки с выходных, вы так или иначе касаетесь искусственного интеллекта. В определенной степени «искусственный интеллект» на самом деле просто означает, что приложения будут чуть умнее, чем мы привыкли. Едва ли метка «ИИ» сейчас означает хоть что-нибудь внятное с практической точки зрения.

Что такое машинное обучение?

Когда приложение уверяет вас, что работает на «искусственном интеллекте», на минутку кажется, что вы в будущем. Но что это на самом деле означает? Мы разбрасываемся громкими словечками — искусственный интеллект, машинное обучение, нейронные сети — но что они на самом деле означают и действительно ли помогают улучшать приложения? Совсем недавно Google и Microsoft добавили обучение нейронных сетей в свои приложения перевода. Google утверждает, что использует машинное обучение, предлагая списки воспроизведения. Todoist говорит, что использует ИИ, чтобы предположить, когда вы должны закончить задачу. Any.do заявляет, что ее искусственный интеллект может делать некоторые задачи вместо вас. И все это было только на прошлой неделе. Часть маркетинговых уловок звучит впечатляюще и остается уловками, но иногда изменения, бесспорно, полезны.

Другие интеллектуальные системы могут предъявлять различные требования к инфраструктуре, которые зависят от задачи, которую вы хотите выполнить, и используемой методологии вычислительного анализа. Варианты использования высокопроизводительных вычислений требуют совместной работы нескольких тысяч машин для достижения сложных целей.

В теории — да. Но на практике мы сталкиваемся с большим количеством проблем, начиная от недостаточного количества данных для обучения, заканчивая невозможностью интерпретировать действия человека при решении такой же задачи. Получается, что невозможно построить алгоритм, который эти действия бы совершал. Хороший пример — автопилотируемый автомобиль. Научить машину держать полосу, входить в повороты и автоматически перестраивать маршрут, если на дороге ремонт, сравнительно несложно, потому что есть понимание, как вел бы себя человек (а значит, как должна вести себя машина) в таких ситуациях.

Как работает нейросеть? В качестве примера можно рассмотреть процесс обучения нейросети распознаванию лиц. Чтобы корректно обучить любую нейросеть, нужно сделать две вещи: собрать достаточное количество данных и определить, за что мы будем ее штрафовать. Применительно к этой задаче необходимо собрать несколько десятков фотографий лиц для каждого из людей, которых надо определить, и штрафовать нейросеть за то, что предсказанный ею человек не совпадает с человеком на фотографии.

В то время как нейронные сети хороши для таких вещей, как распознавание образов на изображениях, другие типы машинного обучения могут быть более полезными для различных задач вроде определения вашей любимой музыки. Google утверждает, что его музыкальное приложение найдет вам музыку, которую вы захотите послушать. Он делает это за счет анализа ваших предыдущих списков проигрывания. Если вам не понравится результат, машина расценит его как неудачу. Но если вы выберете один из предложенных списков, она пометит это как успех и проанализирует победоносные ходы, которые привели ее к вашему сердцу.

Машинное обучение – это особая отрасль искусственного интеллекта (ИИ). Машинное обучение имеет ограниченную область применения и направленность по сравнению с искусственным интеллектом. Искусственный интеллект включает несколько стратегий и технологий, выходящих за рамки машинного обучения.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь