Какую задачу машинного обучения решает искусственный интеллект когда учится управлять автомобилем

0
17

Что такое машинное обучение и как оно работает

Межотраслевые применения

Machine learning в перспективе освободит человека от выполнения рутинных операций и сделает его труд более эффективным. Благодаря этому жизнь станет легче, а компьютеры – ещё умнее. Несмотря на большие успехи в области искусственного интеллекта, современное машинное обучение и другие подходы пока не могут заменить человеческий интеллект. Модели занимаются статистическим обобщением свойств объектов, но помимо общих характеристик также существуют особенности, которые можно определить только методом «ручного» анализа. На данный момент это единственная возможность выявлять единичные (уникальные) признаки, распознавать сложные объекты и новые явления во всей их полноте.

Искусственный интеллект и машинное обучение – это области компьютерных наук, сосредоточены на создании программного обеспечения, которое анализирует, интерпретирует и понимает данные комплексным образом. Ученые в этих областях пытаются запрограммировать компьютерную систему для выполнения сложных задач, связанных с самообучением. Хорошо разработанное программное обеспечение будет выполнять задачи так же быстро, как человек, или даже быстрее.

В рамках машинного обучения методы делятся на две большие категории: обучение под руководством и обучение без наблюдения. Алгоритмы машинного обучения под наблюдением учатся решать проблемы, используя значения данных, помеченные как ввод и вывод. Обучение без наблюдения носит скорее исследовательский характер и направлено на выявление скрытых закономерностей в немаркированных данных.

У «черного ящика» есть дополнительные параметры, которые влияют на то, как будет обрабатываться входной сигнал. Процесс обучения нейросети заключается в поиске таких значений параметров, при которых она будет выдавать ответ, максимально близкий к правильному. Когда мы настроим параметры нужным образом, нейросеть сможет правильно (или максимально близко к этому) решать и другие задачи того же типа — даже если никогда не знала ответов к ним.

Единого определения для machine learning (машинного обучения) пока нет. Но большинство исследователей формулируют его примерно так: Машинное обучение — это наука о том, как заставить ИИ учиться и действовать как человек, а также сделать так, чтобы он сам постоянно улучшал свое обучение и способности на основе предоставленных нами данных о реальном мире.

Глубокое обучение также включает в себя исследование и разработку алгоритмов для машинного обучения. В частности — обучения правильному представлению данных на нескольких уровнях абстракции. Системы глубокого обучения за последние десять лет добились особенных успехов в таких областях как обнаружение и распознавание объектов, преобразование текста в речь, поиск информации.

Вопрос о том, не сделает ли машинное обучение ИИ умнее человека, изначально не совсем корректный. Дело в том, что в природе нет универсальной иерархии в плане интеллекта. Мы по умолчанию считаем себя умнее остальных существ, но, к примеру, белка способна запоминать местонахождения тысячи тайников с запасами, что не под силу даже очень умному человеку. А у осьминогов каждое щупальце способно мыслить и действовать самостоятельно.

Искусственный интеллект (ИИ) – это общий термин для различных стратегий и методов, используемых для того, чтобы сделать машины более похожими на людей. ИИ включает в себя все, от умных помощников, таких как Alexa, до роботов-пылесосов и беспилотных автомобилей. Машинное обучение – одна из многих других отраслей искусственного интеллекта. Машинное обучение – это наука о разработке алгоритмов и статистических моделей, которые компьютерные системы используют для выполнения сложных задач без четких инструкций. Вместо этого системы полагаются на закономерности и выводы. Компьютерные системы используют алгоритмы машинного обучения для обработки больших объемов статистических данных и выявления шаблонов данных. Хотя машинное обучение – это ИИ, не все действия ИИ можно назвать машинным обучением.

Что еще почитать про машинное обучение

Машина ищет оптимальные действия для выполнения поставленной задачи в различных условиях. Например, модель космического корабля совершает посадку. На основании информации о меняющемся окружении необходимо адаптировать способ действия. Оптимизированные шаги и есть результат обучения.

Это простейшие алгоритмы, которые являются прямыми наследниками вычислительных машин 1950-х годов. Они изначально решали формальные задачи — такие, как поиск закономерностей в расчетах и вычисление траектории объектов. Сегодня алгоритмы на базе классического обучения — самые распространенные. Именно они формируют блок рекомендаций на многих платформах.

Самый сложный уровень обучения ИИ. Нейросети моделируют работу человеческого мозга, который состоит из нейронов, постоянно формирующих между собой новые связи. Очень условно можно определить их как сеть со множеством входов и одним выходом. Нейроны образуют слои, через которые последовательно проходит сигнал. Все это соединено нейронными связями — каналами, по которым передаются данные. У каждого канала свой «вес» — параметр, который влияет на данные, которые он передает.

ЧИТАТЬ ТАКЖЕ:  Что является основой 4 й промышленной революции экономика финансы искусственный интеллект идеи

Так же и с ИИ: он уже превосходит нас во всем, что касается сложных вычислений, но по-прежнему не способен сам ставить себе новые задачи и решать их, подбирая нужные данные и условия. Это ограничение в последние годы пытаются преодолеть в рамках сильного ИИ, но пока безуспешно. Надежду на решение этой проблемы внушают квантовые компьютеры, которые выходят за пределы обычных вычислений.

Машинное обучение – это особая отрасль искусственного интеллекта (ИИ). Машинное обучение имеет ограниченную область применения и направленность по сравнению с искусственным интеллектом. Искусственный интеллект включает несколько стратегий и технологий, выходящих за рамки машинного обучения.

В сфере инвестиций алгоритмы на базе машинного обучения анализируют рынок, отслеживают новости и подбирают активы, которые выгоднее всего покупать именно сейчас. При этом с помощью предикативной аналитики система может предсказать, как будет меняться стоимость тех или иных акций за конкретный период и корректирует свои данные после каждого важного события в отрасли.

Сегодня ключевые исследования сфокусированы на разработке машинного обучения с эффективным использованием данных — то есть систем глубокого обучения, которые могут обучаться более эффективно, с той же производительностью, за меньшее время и с меньшими объемами данных. Такие системы востребованы в персонализированном здравоохранении, обучении роботов с подкреплением, анализе эмоций.

Это более сложный вид обучения, где ИИ нужно не просто анализировать данные, а действовать самостоятельно в реальной среде — будь то улица, дом или видеоигра. Задача робота — свести ошибки к минимуму, за что он получает возможность продолжать работу без препятствий и сбоев.

Требования

Создание продукта искусственного интеллекта, как правило, является более сложным процессом, поэтому многие люди выбирают готовые решения искусственного интеллекта для достижения своих целей. Эти решения, как правило, созданы после многих лет исследований, и разработчики предоставляют их для интеграции с продуктами и услугами через API.

Область применения искусственного интеллекта включает в себя множество методов, используемых для решения различных проблем. Эти методы охватывают генетические алгоритмы, нейронные сети, глубокое обучение, алгоритмы поиска, системы, основанные на правилах, и само машинное обучение.

В медицине machine learning помогает анализировать данные различных исследований состояния здоровья пациента. Умные системы на базе ML могут по рентгеновскому снимку выявлять патологии или предсказывать вероятность наличия какого-либо заболевания по совокупности результатов анализов.

Искусственный интеллект находит применение во всех отраслях. Искусственный интеллект можно использовать для оптимизации цепочек поставок, прогнозирования спортивных результатов, улучшения сельскохозяйственных результатов и персонализации рекомендаций по уходу за кожей.

Вот как определяют машинное обучение представители ведущих ИТ-компаний и исследовательских центров: Nvidia: «Это практика использования алгоритмов для анализа данных, изучения их и последующего определения или предсказания чего-либо». Университет Стэнфорда: «Это наука о том, как заставить компьютеры работать без явного программирования». McKinsey & Co: «Машинное обучение основано на алгоритмах, которые могут учиться на данных, не полагаясь на программирование на основе базовых правил». Вашингтонский университет: «Алгоритмы машинного обучения могут сами понять, как выполнять важные задачи, обобщая примеры, которые у них есть». Университет Карнеги Меллон: «Сфера машинного обучения пытается ответить на вопрос: «Как мы можем создавать компьютерные системы, которые автоматически улучшаются по мере накопления опыта и каковы фундаментальные законы, которые управляют всеми процессами обучения?»

Обучение с учителем — когда у машины есть некий учитель, который знает, какой ответ правильный. Это значит, что исходные данные уже размечены (отсортированы) нужным образом, и машине остается лишь определить объект с нужным признаком или вычислить результат.

ИИ собирает данные со всех входов, оценивая их вес по заданным параметрами, затем выполняет нужное действие и выдает результат. Сначала он получается случайным, но затем через множество циклов становится все более точным. Хорошо обученная нейросеть работает, как обычный алгоритм или точнее.

Обучение с подкреплением инженеры используют для беспилотников, роботов-пылесосов, торговли на фондовом рынке, управления ресурсами компании. Именно так алгоритму AlphaGo удалось обыграть чемпиона по игре Го: просчитать все возможные комбинации, как в шахматах, здесь было невозможно.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь