Содержание статьи
Что такое нейронная сеть
Для чего используются нейронные сети?
Нейронные сети могут отслеживать действия пользователей для разработки персонализированных рекомендаций. Они также могут анализировать все действия пользователей и обнаруживать новые продукты или услуги, которые интересуют конкретного потребителя. Например, стартап из Филадельфии Curalate помогает брендам конвертировать сообщения в социальных сетях в продажи. Бренды используют службу интеллектуальной маркировки продуктов (IPT) Curalate для автоматизации сбора и обработки контента пользователей социальных сетей. IPT использует нейронные сети для автоматического поиска и рекомендации продуктов, соответствующих активности пользователя в социальных сетях. Потребителям не нужно рыться в онлайн-каталогах, чтобы найти конкретный продукт по изображению в социальных сетях. Вместо этого они могут использовать автоматическую маркировку Curalate, чтобы с легкостью приобрести продукт.
С другой стороны, при глубоком обучении специалист по работе с данными предоставляет программному обеспечению только необработанные данные. Сеть глубокого обучения извлекает функции самостоятельно и обучается более независимо. Она может анализировать неструктурированные наборы данных (например, текстовые документы), определять приоритеты атрибутов данных и решать более сложные задачи.
3. Рекуррентные Нейронные Сети (RNN): Магия Последовательностей
RNN созданы для работы с последовательными данными, такими как временные ряды или текст. Их уникальность в циклических связях, которые позволяют учитывать предыдущие входы. Такие сети прекрасно справляются с задачами обработки естественного языка и машинного перевода.
Примечание: Работа нейронной сети сравнима с действиями человека: сталкиваясь с незнакомым предметом, он узнает его свойства и делает выводы. Аналогичные процессы происходят в узлах нейросетей, когда решая определенную задачу, они используют полученный опыт для дальнейшего обучения.
Сервисы глубокого обучения AWS используют возможности облачных вычислений, чтобы вы могли масштабировать свои нейронные сети глубокого обучения с меньшими затратами и оптимизировать их для повышения скорости. Вы также можете использовать подобные сервисы AWS для полного управления конкретными приложениями глубокого обучения:
Нейронные сети прямого распространения (Feed forward neural networks, FFNN). Прямолинейный вид нейросетей, при котором соседние узлы слоя не связаны, а передача информации осуществляется напрямую от входного слоя к выходному. FFNN имеют малую функциональность, поэтому часто используются в комбинации с сетями других видов.
1. Перцептрон: Основа Искусственного Интеллекта
Знакомьтесь с перцептроном — фундаментальной формой нейронных сетей, созданным в 1957 году Фрэнком Розенблаттом. Этот инструмент представляет собой одиночный или множественный набор нейронов, способных принимать решения, основанные на входных данных. Важно понимать, что перцептрон стал отправной точкой для развития более сложных и эффективных структур.
Выходной слой дает окончательный результат обработки всех данных искусственной нейронной сетью. Он может иметь один или несколько узлов. Например, при решении задачи двоичной классификации (да/нет) выходной слой будет иметь один выходной узел, который даст результат «1» или «0». Однако в случае множественной классификации выходной слой может состоять из более чем одного выходного узла.
Машинное зрение
Нейронные сети могут анализировать человеческую речь независимо от ее речевых моделей, высоты, тона, языка и акцента. Виртуальные помощники, такие как Amazon Alexa и программное обеспечение для автоматической транскрипции, используют распознавание речи для выполнения следующих задач:
Искусственный интеллект — это область компьютерных наук, которая исследует методы предоставления машинам возможности выполнять задачи, требующие человеческого интеллекта. Машинное обучение — это метод искусственного интеллекта, который дает компьютерам доступ к очень большим наборам данных для дальнейшего обучения. Программное обеспечение для машинного обучения находит шаблоны в существующих данных и применяет эти шаблоны к новым данным для принятия разумных решений. Глубокое обучение — это разновидность машинного обучения, в котором для обработки данных используются сети глубокого обучения.
4. Свёрточные Нейронные Сети (CNN): Глаза Искусственного Интеллекта
Задачи обработки изображений и видео находят свое решение в свёрточных нейронных сетях (CNN). Они внедряют операции свертки для выделения ключевых признаков, что делает их идеальными для распознавания объектов и сегментации изображений.
Традиционные методы машинного обучения требуют участия человека, чтобы программное обеспечение работало должным образом. Специалист по работе с данными вручную определяет набор соответствующих функций, которые должно анализировать программное обеспечение. Это ограничение делает создание и управление программным обеспечением утомительным и трудозатратным процессом.
Нейронная сеть медленно накапливает знания из этих наборов данных, которые заранее дают правильный ответ. После обучения сеть начинает делать предположения об этническом происхождении или эмоциях нового изображения человеческого лица, которое она никогда раньше не обрабатывала.
Рекуррентные нейронные сети (Recurrent neural network, RNN). Используют направленную последовательность связи между узлами. В RNN результат вычислений на каждом этапе используется в качестве исходных данных для следующего. Благодаря этому, рекуррентные нейронные сети могут обрабатывать серии событий во времени или последовательности для получения результата вычислений.
Машинное обучение и глубокое обучение
Глубокие нейронные сети или сети глубокого обучения имеют несколько скрытых слоев с миллионами связанных друг с другом искусственных нейронов. Число, называемое весом, указывает на связи одного узла с другими. Вес является положительным числом, если один узел возбуждает другой, или отрицательным, если один узел подавляет другой. Узлы с более высокими значениями веса имеют большее влияние на другие узлы.
Теоретически глубокие нейронные сети могут сопоставлять любой тип ввода с любым типом вывода. Однако стоит учитывать, что им требуется гораздо более сложное обучение, чем другим методам машинного обучения. Таким узлам нужны миллионы примеров обучающих данных, а не сотни или тысячи, как в случае с простыми сетями.
Примечание: При такой модели обучение нейронной сети сводится к изменению коэффициенту весов, то есть связи между отдельными нейронами. Если вес положительный — сигнал в нейроне усиливается, нулевой — нейроны не влияют друг на друга, отрицательный — сигнал в принимающем нейроне погашается.
Обучение нейронной сети — это процесс обучения нейронной сети выполнению задачи. Нейронные сети обучаются путем первичной обработки нескольких больших наборов размеченных или неразмеченных данных. На основе этих примеров сети могут более точно обрабатывать неизвестные входные данные.
Архитектура нейронных сетей повторяет структуру человеческого мозга. Клетки человеческого мозга, называемые нейронами, образуют сложную сеть с высокой степенью взаимосвязи и посылают друг другу электрические сигналы, помогая людям обрабатывать информацию. Точно так же искусственная нейронная сеть состоит из искусственных нейронов, которые взаимодействуют для решения проблем. Искусственные нейроны — это программные модули, называемые узлами, а искусственные нейронные сети — это программы или алгоритмы, которые используют вычислительные системы для выполнения математических вычислений.
Мы предлагаем готовые решения для работы с искусственным интеллектом, машинным обучением и нейронными сетями. Клиентам доступны платформа для совместной ML-разработки с ускорением до +1700 GPU Tesla v100 и A100 ML Space, инструменты для обработки языка ruGPT-3 & family и другие сервисы.
В современном мире нейронные сети стали настоящим флагманом в области искусственного интеллекта, предоставляя невероятные возможности для обработки данных и решения сложных задач. Уникальность каждого типа нейронных сетей позволяет оптимизировать их для конкретных целей. Давайте пройдемся по ключевым видам нейронных сетей, которые активно формируют ландшафт современных технологических решений.