Содержание статьи
Машинное обучение: методы и способы
Как сделать свой ИИ самостоятельно: пошаговый план
Случайный лес — универсальный, быстро обучаемый механизм для обнаружения связей внутри набора данных. В пример можно привести нежелательные массовые рассылки, создающие проблемы не только пользователям, но и провайдерам Интернета, которым из-за спама приходится иметь дело с повышенной нагрузкой на серверы. Для борьбы с проблемой были разработаны автоматизированные методы фильтрации спама, которые с помощью ансамбля решающих деревьев быстро и эффективно определяют нежелательные письма.
При обучении с подкреплением машине позволяют взаимодействовать с окружением (например, сбрасывать бракованную продукцию с конвейера в корзину) и «вознаграждают», когда она правильно выполняет задание. Автоматизировав подсчет вознаграждений, можно дать возможность машине обучаться самостоятельно.
Одно из применений обучения с подкреплением — сортировка товаров в розничных магазинах. Некоторые продавцы экспериментируют с роботизированными системами сортировки предметов одежды, обуви и аксессуаров. Роботы, используя обучение с подкреплением и глубинное обучение, определяют, насколько сильно нужно сдавить предмет при хватании и какой хват будет наилучшим.
Глубинные нейронные сети применяются, в частности, для ускорения скрининга больших объемов данных при поиске лекарственных средств. Такие нейросети способны обрабатывать множество изображений за короткое время и извлечь больше признаков, которые модель в конечном счете запоминает.
Не секрет, что сегодня технологии развиваются с огромной скоростью. Искусственный интеллект (ИИ, AI) и нейронные сети еще не так давно были плодом воображения писателей-фантастов, а сегодня стали реальностью. С искусственным интеллектом можно решать множество задач, ведь он широко применяется в разных областях — медицине, тяжелой промышленности, маркетинге и других. Мы постоянно используем ИИ в повседневной жизни, нередко сами того не подозревая. Поскольку все больше компаний и предприятий внедряет ИИ в свою деятельность, спрос на высококвалифицированных специалистов в соответствующей сфере стремительно растет.
В страховой компании дерево решений поможет выяснить, какие виды страховых продуктов и премий лучше задействовать с учетом возможного риска. Используя данные о местонахождении и сведения о страховых случаях с учетом погодных условий, система может определять категории риска на основании поданных требований и затраченных сумм. Затем, используя модели, система будет оценивать новые заявления о страховой защите, классифицируя их по категории риска и возможному финансовому ущербу.
Способ можно применять для распознавания мошенничеств с попытками выдать себя за другого. Мошенничества можно классифицировать как аномалию на фоне обычной активности. Методы машинного обучения с частичным привлечением учителя позволяют создавать модели, распознающие такие аномалии. Соответствующие системы нередко применяются для выявления попыток мошенничеств при онлайн-сделках.
Чаще всего обучение с учителем применяется для задач классификации и прогнозирования. Обучение с учителем можно использовать при определении финансового риска частных лиц и организаций на основе имеющихся сведений о прошлой финансовой активности, можно неплохо прогнозировать покупательское поведение с учетом прежних закономерностей.
Способы машинного обучения
Согласно результатам международного исследования Microsoft, 94% руководителей считают, что технологии искусственного интеллекта важны для решения стратегических задач их организаций. При этом 27% опрошенных уже внедрили соответствующие технологии в ключевые бизнес-процессы, еще 46% ведут пилотные проекты.
Поскольку разнообразие методов и способов обучения искусственного интеллекта не меньше, чем у интеллекта естественного, то, прежде чем начинать проект в этой области, стоит ознакомиться с методами и способами машинного обучения, их возможностями, сферами применения и ограничениями. Это поможет эффективнее распорядиться отпущенными на проект ресурсами и не пасть жертвой нынешнего ажиотажа вокруг машинного обучения и искусственного интеллекта.
Кластеризация также действенна, когда в сложных наборах данных нужно обнаружить группы, которые трудно заметить без специальных средств. Примеры — от группирования похожих документов в базе данных до обнаружения по криминальным новостям территорий с повышенным уровнем преступности.
Чаще всего можно услышать, что искусственный интеллект подразумевает способность электронной вычислительной машины анализировать данные и принимать решения в соответствии с принципами, по которым функционирует человеческий мозг. Таким образом, от нейросети мы вправе требовать умения обучаться и применять свои знания на практике. Современный искусственный интеллект успешно справляется с этими задачами.
Россия, благодаря традиционно сильной математической школе не отстает от мировых тенденций. И если судить по докладам на конференции «Технологии машинного обучения. Искусственный интеллект и нейросети: инструменты и опыт реальных проектов», организованной издательством «Открытые системы», применение средств ИИ в нашей стране уже стало если не обыденностью, то достаточно распространенным способом не только оптимизировать, но и радикально поменять бизнес-процессы.
Чтобы одиночное дерево решений давало точные результаты, его нужно обучать, алгоритм же случайного леса (random forest) использует «комитет» случайным образом созданных решающих деревьев с разными наборами атрибутов и дает возможность им проголосовать, чтобы выбрать самый популярный класс.