Какая система относится к системам искусственного интеллекта

0
11

Виды искусственного интеллекта — их особенности и применение

Что такое глубокое обучение?

Например, в рамках базового машинного обучения компьютер может научиться распознавать птиц на фотографиях. Обучаясь на фотографиях птиц и других животных или предметов, машина учится различать их, знакомясь с уникальными птичьими особенностями, такими как крылья и клювы.

Этот тип систем ИИ давно известен. Он сохраняет и использует опыт. Такой интеллект может улучшить работу проанализировав предыдущий опыт. Например, с таким интеллектом — робот-пылесос. Робот перемещается по комнате и убирает её на основании карты, которая построена с использованием датчиков. Другой пример — беспилотная техника собирает и хранит информацию о ближайших автомобилях: скорость, расстояние

По мнению аналитиков генеративный искусственный интеллект в предстоящие лет 5 будет трендом, так как к нему сегодня вырос интерес и он обладает хорошей коммерциализацией. Но применение генеративного ИИ имеет большие риски. Главный — повышенная угроза, создаваемая «глубинными подделками». Создание человеческих обликов, которые реалистичны, часто применяются чтоб обмануть или в качестве мошенничества в финансовой области. Особая опасность кроется в дипфейках реального времени основанных на ИИ, они могут подделывать человеческий голоса.

Термин «Искусственный интеллект» впервые произнёс Джон Маккарти, который и стал его автором. Он собрал первую конференцию в 1956 году, речь на которой шла о машинах, способных мыслить как человек, осуществлять обучение, собирать больше данных и производить обработку информации.

Чат-боты проявились в период пандемии, когда все компании переводили сотрудников на удалённую работу. Масса виртуальных помощников применяет глубокое обучение. Эффективная сторона этого вида ИИ — моделирование с помощью языка, что позволяет машине из слов составлять текст и переработать его в компьютерный код.

Билл Гейтс, в статье «Эпоха ИИ началась» заявляет, что прорыв, который будет происходить на основе искусственного интеллекта связан с повышением уровня машинного обучения и его доступностью. По его прогнозам, в течении последующих десяти лет программное обеспечение, основанное на искусственном интеллекте, поспособствует проведению обучения в более в расширенном формате, если сравнивать с периодом распространения компьютеров.

Однако, когда на сцену вышел генеративный ИИ, такой как ChatGPT, его удивительная способность имитировать человеческие реакции и доступность для каждого, у кого есть компьютер, неожиданно вывели дискуссии о машинном обучении и соблюдении этических норм в публичную сферу. Такие понятия, как глубокое обучение, NLP и нейронные сети, просочились в повседневные профессиональные и даже личные разговоры.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая делает из фотки аниме

Эта система не ограничена по уровню выполняемых операций, она предназначена для решения интеллектуальных задач. Цель вида — разработать систему, которая будет думать самостоятельно как человек. Сегодня сильный тип на стадии создания и разработки, нужно чтобы техника могла работать в коллективе

Типы искусственного интеллекта

Узкоспециализированный, используется для решения только конкретной задачи и выдачи данных. Этот интеллект работает в строгих рамках, имеет набор языков и контекстов. Например, если данный интеллект настроен на поиск спама, то он не способен произвести сортировку почты

«Цифровой двойник» считается физически точной виртуальной копией объектов. Эта технология — прорыв в цифровой трансформации, она развивалась параллельно искусственному интеллекту. ИИ делает лучше «цифровые двойники», он позволяет технологии проводить анализ вероятных сценариев, предоставляя необходимое количество данных исследователям. Всё это работает на увеличение эффективности и упрощение процесса принятия решений.

Рассматривайте ее как дорожную карту для разумного использования ИИ по мере развития данной технологии. Система управления ИИ представляет собой структурированный способ управления рисками и возможностями, связанными с ИИ. Она включает в себя такие ключевые компоненты, как прозрачность, объясняемость и автономность, давая организациям четкие указания по использованию ИИ в соответствии с развивающимися нормативными актами (например, Законом ЕС об ИИ).

Обеспечение ответственного подхода к разработке ИИ имеет решающее значение для его безопасного, надежного и этичного развития. Но как можно решить вопросы прозрачности и объяснимости в контексте ответственного использования ИИ? Подробно данные понятия рассмотрены в нашей статье о создании ответственного искусственного интеллекта.

Так как всё больше автопроизводителей вкладывают средства в транспорт, то ожидается, что беспилотные авто скоро будут представлены на рынке в большом количестве. Согласно прогнозу к 2040 году автономный транспорт будет широко применяться в общественном транспорте. По прогнозам, к 2045 году в автомобильном парке число таких новых машин приблизится к половине.

Для тех, кто не знаком с компьютерными науками, попытка разобраться в многочисленных аспектах искусственного интеллекта и их последствиях может оказаться непосильной задачей. Здесь мы расскажем, что такое искусственный интеллект, как он работает, в чем разница между машинным обучением, глубоким обучением, обработкой естественного языка и многим другим. Давайте приступим.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь