Как учиться нейросеть

0
21

Нейросети для чайников и гуманитариев: когда роботы заменят людей

Какую роль играет искусственный нейрон?

Существуют полуавтономные и автономные системы помощи водителям, в которых применяются нейросети. Первые уже часто используются в автомобилях: система определяет, где можно ехать, а где есть препятствие, может удерживать курс и ускоряться. Нейросеть умеет различать другие автомобили, пешеходов, велосипедистов. Например, такой системой оснащены автомобили Tesla. Но рядом всегда должен быть человек, который в случае ошибки может взять управление на себя. Системы для полностью автономного вождения, когда автопилот работает без внешнего контроля, пока не изобрели.

Последовательность нейрослоев часто применяют для более глубокого обучения нейронной сети и большей формализации имеющихся данных. Именно поэтому, чтобы получить итоговый выходной вектор, нужно проделать вышеописанную операцию пару раз подряд по направлению от одного слоя к другому. В результате для 1-го слоя входным вектором будет являться X, а для последующих входом будет выход предыдущего слоя. То есть нейронная сеть может выглядеть следующим образом:

Обучение с учителем используется для нейросетей , которые в дальнейшем будут решать задачи классификации: получать на входной слой большой объем данных и разделять информацию по заданным категориям. Этот механизм лежит в основе разных функций: модель может в будущем специализироваться и на генерации текста или продолжении предложений (нейронная сеть LSTM), и на идентификации и классификации картинок (сверточная нейронная сеть CNN). Кроме того, обучение с учителем позволяет модели успешно работать с прогнозами: оценивать динамику спроса на товар и менять цену и другие количественные характеристики для максимизации выручки или строить прогноз на бирже.

Пусть у нас уже есть нейронная сеть, но ведь ее ответы являются случайными, то есть наша нейросеть не обучена. Сейчас она способна лишь по входному вектору input выдавать случайный ответ, но нам нужны ответы, которые удовлетворяют конкретной поставленной задаче. Дабы этого достичь, сеть надо обучить. Здесь потребуется база тренировочных примеров и множество пар X — Y, на которых и будет происходить обучение, причем с использованием известного алгоритма обратного распространения ошибки.

Метод обучения с учителем ( supervised learning) аналогичен получению знаний в школе, где нейросеть выступает в качестве ученика, а человек — в роли преподавателя. Роль учителя заключается в том, чтобы подать на вход модели исходные данные и их «расшифровку » . По аналогии с математическими задачами это будет «вопрос » и «правильный «ответ » (метка). Например, при обучении задаче классификации изображений каждой отдельной картинке будет присвоена метка, означающая класс изображения (например, кошка или собака на фото). Так происходит настройка параметров для минимизации ошибок между собственными предположениями и « правильными ответами» (метками). Сопоставляя их из раза в раз, нейронная сеть б удет самос тоятельно обучаться отвечать и на последующие запросы правильно уже без помощи человека.

Для того чтобы обучение с подкреплением было результативно, важно пройти много предварительных тренировок. Долгий период развития навыков модели и необходимость большого количества примеров называют главными минусами этого формата. Если в будущей работе нейросеть столкнется с незнакомой ситуацией, то реакция будет непредсказуема.

Заменят ли нейросети людей

Чтобы обучить нейронную сеть различать изображения, сотрудники Google собрали миллионы картинок и пометили их вручную. Когда Google, чтобы отсеять ботов, в следующий раз попросит вас «щелкнуть каждое изображение, содержащее стрекозу» и вы это сделаете, знайте, что вы тоже внесете вклад в обучение нейросетей. В среде айтишников даже ходит такая шутка: когда роботы научатся ставить галочку в капчах и проходить этот квест, тогда и начнется восстание машин.

В своей книге «Как учится машина. Революция в области нейронных сетей и глубокого обучения» Ян Лекун рассказывает, как работают нейросети и где применяются. Автор — лауреат премии Тьюринга, аналога Нобелевской премии в области вычислительной техники. Его называют крестным отцом нейронных сетей. Обзор будет полезен тем, кто пользуется достижениями нейросетей и хочет узнать о них больше, не погружаясь в сложные технические подробности.

Машинное обучение без учителя (unsupervised learning) — менее популярный формат развития навыков нейросетей . Из названия понятно, что оно предполагает самостоятельное совершенствование модели. Как это работает? На вход модели подаются неразмеченные данные и система без чьей-либо помощи ищет в них закономерности. Этот формат отличается от предыдущего тем, что модели заранее не известен «правильный ответ» и его нужно найти. Для поиска следует проанализировать все данные и обнаружить в них общие скрытые структуры или паттерны для будущей классификации, которую она проводит без явного руководства. Модель, натренированная таким образом, легко справится с задачей распределения тысяч статей по тематике в зависимости, например, от упоминаемых ключевых слов.

ЧИТАТЬ ТАКЖЕ:  Как с помощью нейросети найти человека

Попробуйте угадать, где поработала нейросеть, а где человек! Мы придумали короткий тест, в котором предлагаем вам сравнить результаты и проверить свое чутье. В конце вас ждут несколько советов, как можно отличить авторскую работу от машинной. Для теста мы использовали сервисы Балабоба и MidJourney, за что безмерно признательны их разработчикам.

Специалисты Института трансляционной аналитики данных (TDAI) в Университете штата Огайо разработали платформу Wildbook, которая помогает исследователям и защитникам природы находить и сохранять редкие виды животных. Чтобы это стало возможным, ученые обучили нейронные сети распознавать изображения тех, кому угрожает опасность. Машина видит фотографию кита, косатки или леопарда и узнает животное, опираясь на текстуру и окраску его шерсти, линию плавника или хвоста. Система обучается с помощью образцов, помеченных вручную.

Первую обучающуюся машину создал в 1957 году американский психолог Фрэнк Розенблатт в авиационной лаборатории Корнеллского университета в Буффало, США. Ученый вдохновился работой нейронов в человеческом мозге и по аналогии сделал искусственную нейросеть, которую назвал перцептрон.

Результаты

Обучать нейронные сети выполнению задач можно по-разному: процесс развития навыков возможен с учителем или без него, а также с подкреплением. Каждый формат предназначен для решения конкретных задач: классификации, прогнозирования, распознавания изображения и так далее. Как выбрать оптимальный формат и чем между ними разница?

При этом нередки ситуации, в которых модели необходима хотя бы частичная «разметка» данных для результативной работы. В этом случае потребуется частичное привлечение учителя: он заранее размечает часть данных самостоятельно , а остальные подаются модели в неразмеченном виде. Этот вариант не только повышает эффективность «тренировок» модели, но и значительно ускоряет их.

Когда мы узнаем дельту последнего слоя, мы сможем найти дельты и всех предыдущих слоев. Чтобы это сделать, нужно будет лишь перемножить для текущего слоя транспонированную матрицу с дельтой, а потом перемножить результат с вектором производных функции активации предыдущего слоя:

Существует много способов обучения нейросетей. Большинство из них состоят из двух этапов: поиск основного правила и отладка. На первом этапе нейросети показывают миллиарды картинок и говорят, что на них изображено. Машина находит отличительные черты разных предметов и вырабатывает собственный алгоритм, как их различать. На втором этапе проверяют, может ли нейросеть правильно назвать картинки, которых она еще не видела. Если машина ошибается, оператор ей об этом сообщает. Тогда нейросеть перенастраивает свои внутренние связи, чтобы в следующий раз дать правильный ответ.

Люди с творческими профессиями и помогающими специальностями, например психологи, детские воспитатели, учителя и консультанты, имеют больше шансов сохранить работу. Искусственный интеллект еще не скоро сможет заменить человеческий опыт. По мнению Яна Лекуна, современным нейронным сетям не хватает разума. «Когда дело доходит до создания действительно умных машин, способных разрабатывать стратегии и хорошо разбираться в мире, у нас даже нет ингредиентов для рецепта», — жалуются ученые-коллеги Яна Лекуна.

Аналогично чтобы построить автомобиль, который может ездить самостоятельно, сначала нужно собрать данные от опытного водителя. Для этого каждую долю секунды надо записывают положение автомобиля на дороге и то, как водитель поворачивает руль, чтобы машина оставалась в пределах полосы. В результате за час наблюдений ученые получают 36 000 положений автомобиля и углов поворота руля. На этой информации нейросеть потом учится.

Только ленивый не слышал сегодня о существовании и разработке нейронных сетей и такой сфере, как машинное обучение. Для некоторых создание нейросети кажется чем-то очень запутанным, однако на самом деле они создаются не так уж и сложно. Как же их делают? Давайте попробуем самостоятельно создать нейросеть прямого распространения, которую еще называют многослойным перцептроном. В процессе работы будем использовать лишь циклы, массивы и условные операторы. Что означает этот набор данных? Только то, что нам подойдет любой язык программирования, поддерживающий вышеперечисленные возможности. Если же у языка есть библиотеки для векторных и матричных вычислений (вспоминаем NumPy в Python), то реализация с их помощью займет совсем немного времени. Но мы не ищем легких путей и воспользуемся C#, причем полученный код по своей сути будет почти аналогичным и для прочих языков программирования.

Нейросети могут прогнозировать спрос на разные продукты и предсказывать изменение цен акций. Например, они помогают французской государственной энергетической компании EDF прогнозировать потребление энергии. С этими знаниями компания эффективнее управляет производительностью электростанций и распределяет ресурсы с минимальными потерями. В маркетинге нейросети используются для изучения интереса людей к тому или иному контенту:к примеру, подскажут, на какой рекламный баннер будут реагировать чаще.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь