Как создать свой искусственный интеллект на компьютере с помощью python

0
14

Искусственный интеллект на Python для детей

Создаем ИИ: как написать нейросеть на Пайтон?

Специалисты, занимающиеся технологическим прогнозированием, называют ИИ (artificial intellect) одной из четырех технологий, которые в ближайшее время приведут к формированию «нового экономического уклада» и перевернут нашу жизнь сильнее, чем она изменилась с начала 50-х годов XX века, при первой научно-технической революции.

Давайте поймем почему формула имеет такой вид. Сначала нам нужно учесть то, что мы хотим скорректировать вес пропорционально размеру ошибки. Далее ошибка умножается на значение, поданное на вход нейрона, что, в нашем случае, 0 или 1. Если на вход был подан 0, то вес не корректируется. И в конце выражение умножается на градиент сигмоиды. Разберемся в последнем шаге по порядку:

Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.

Нейросеть создается из множества сущностей как нейроны, эти конструкции не запрограммированы на узкую задачу, а принимают любую информацию, передают дальше, изучают и могут по мере прохождения генерировать реакцию на нее «на лету», в зависимости от анализа на текущий момент. Обсчитывает искусственные компьютерные «нейроны» компьютер, по приказу из Python. Нейросеть ниже принимает на вход картинку, а на выходе дает число, то есть предположение о том, нарисована ли на картинке кошка или это собака. Если нейросеть ошибается, то накапливает опыт. В следующий раз она с меньшей вероятностью получит ошибку.

Проекты в области искусственного интеллекта сейчас выходят на новый уровень. Мы это можем понять по распространению техники, в основе которой они лежат: личные помощники (в том числе умные колонки), спам-фильтры, системы поимки мошенников, поисковики, рекомендательные системы и многое другое.

Вы знали, что разработчики нейросети LaMDA в 2022 году заявили о появлении у их детища сознания? А ChatGPT стал самым быстрорастущим сервисом в истории. К слову, сам ChatGPT является примером того, как создать нейросеть на Python, потому что он написан именно на этом языке программирования.

Что будет в нашей программе?

Но в том-то и дело, что нейросети придется действовать самостоятельно и напрямую взять и возвести число в степень мы ей тоже не скажем, хотя в Python имеется такой функционал. Предположим, у нас есть выражение 5*5 = 25. Нейросеть получит 5 и затем будет пропускать ее через слои нейронов. Станет умножать числа и свои результаты на какие-то веса, применять функции, пока не приблизится к правильному результату, не поймет, как мы получили этот результат.

Так часто происходит в реальных задачах, например, при распознавании предметов. Не у всех из них есть жесткие критерии: скажем, гипертрофированного мультяшного персонажа мы по-прежнему различаем как человека, хотя у него совсем другие пропорции. Нейронную сеть сложно научить похожему — но современные системы могут справиться и с этим.

Еще есть, например, метод обратного распространения ошибки — градиентный алгоритм для многослойных нейросетей. Сигналы ошибки, рассчитанные с помощью градиента, распространяются от выхода нейронной сети к входу, то есть идут не в прямом, а в обратном направлении.

За это у нас отвечают методы model.add и функция Dense. Ее параметры, которые мы здесь прописали надо понимать так: слой с 10 нейронами, в который на вход передается 1 число и второй слой — 1 нейрон, получающий 10 чисел. Зададим параметры того, как нейросеть будет обучаться.

Две эти IT-дисциплины сегодня реализуют концепцию ИИ. Задачи в этих сферах, которые на Java или других языках могут потребовать сотни строк кода, на Python решаются несколькими командами. Это происходит за счет отличного набора библиотек к Python: Keras, Scikit-learn, TensorFlow, NumPy, Pandas. Изучение языка Python не представляет никакой сложности. Дочитайте статью до конца и вы создадите свой первый ИИ, точнее, нейросеть, которая будет возводить в степень любое заданное число.

ЧИТАТЬ ТАКЖЕ:  Как научить нейросеть играть

Этот язык программирования стремительно развивается и по данным наиболее авторитетного рейтинга языков TIOBE на апрель 2023 года, является самым востребованным в мире. Не в последнюю очередь его положение связано с тем, что сообщество разработчиков глубоко усовершенствовали его, чтобы он лучше других подходил для машинного обучения и создания нейросетей.

Создание проекта

Ну и последняя, но не менее важная – библиотека Matplotlib. Она служит для визуализации данных двумерной графикой. На её основе можно построить графики, изображения и прочие визуальные данные, которые человеком воспринимаются гораздо проще и лучше, нежели нули и единицы.

Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.

Человеческий мозг состоит из ста миллиардов клеток, которые называются нейронами. Они соединены между собой синапсами. Если через синапсы к нейрону придет достаточное количество нервных импульсов, этот нейрон сработает и передаст нервный импульс дальше. Этот процесс лежит в основе нашего мышления. Мы можем смоделировать это явление, создав нейронную сеть с помощью компьютера. Нам не нужно воссоздавать все сложные биологические процессы, которые происходят в человеческом мозге на молекулярном уровне, нам достаточно знать, что происходит на более высоких уровнях. Для этого мы используем математический инструмент — матрицы, которые представляют собой таблицы чисел. Чтобы сделать все как можно проще, мы смоделируем только один нейрон, к которому поступает входная информация из трех источников и есть только один выход. 3 входных и 1 выходной сигнал Наша задача — научить нейронную сеть решать задачу, которая изображена в ниже. Первые четыре примера будут нашим тренировочным набором. Получилось ли у вас увидеть закономерность? Что должно быть на месте вопросительного знака — 0 или 1?

Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.

Готовить наше «восстание машин» будем на браузерной платформе Google Collab. Ее плюс в том, что все библиотеки Python там уже добавлены. Вам нужно только прописать их подключение, и можно обращаться к фреймворкам, программируя прямо в браузере. Еще один довод «за» — возможность запускать код построчно, то есть передавать интерпретатору не весь скрипт, а только ту его часть, на результатах которой вы хотите сосредоточиться. Подключаем библиотеки оператором Import:

Наш искусственный интеллект не будет распознавать все объекты, по типу: машин, других животных, людей и тому прочее. Не будет он это делать по одной причине. Мы в качестве датасета или же, другими словами, набора данных для тренировки – будем использовать датасет от компании Microsoft. В датасете у них собрано более 25 000 фотографий котов и собачек, что даст нам возможность натренировать правильные весы для распознавания наших собственных фото.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь