Содержание статьи
Как сделать свою нейросеть за 10 минут на Python
Формула для расчета выхода нейрона
Но ее легко получить путем увеличения количества нейронов. Давайте попробуем реализовать обучение с тремя нейронами в скрытом слое и одним выходным (выход ведь у нас только один). Чтобы все получилось, создадим массив X и Y, имеющий обучающие данные и саму нейронную сеть:
Все, что сейчас произошло у вас в мозгу, мы называем мышлением. Мозг принял входные данные, увидел выходные, вычислил взаимосвязь и впоследствии научился контролировать как их распознавать? Причем уже без необходимости в повторном вычислении взаимосвязи входных и выходных данных. Ну а нам осталось только воспроизвести этот же процесс в коде, чем мы сейчас и займемся. Но сначала давайте наглядно увидим, как будет выглядеть наш перцептрон. У нас будут входные данные, будет сам нейрон, конечно же результат и синапсы. Как уже понятно, синапсы это некая связь между . входными данными и тем, что попадет в нейрон. Соответственно, у нас есть какие-то входные данные, это будут нолики и единицы, своего рода аналог true и false в булевом типе данных.
Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.
Пусть у нас уже есть нейронная сеть, но ведь ее ответы являются случайными, то есть наша нейросеть не обучена. Сейчас она способна лишь по входному вектору input выдавать случайный ответ, но нам нужны ответы, которые удовлетворяют конкретной поставленной задаче. Дабы этого достичь, сеть надо обучить. Здесь потребуется база тренировочных примеров и множество пар X — Y, на которых и будет происходить обучение, причем с использованием известного алгоритма обратного распространения ошибки.
Под искусственной нейронной сетью (ИНС) понимают математическую модель (включая ее программное либо аппаратное воплощение), которая построена и работает по принципу функционирования биологических нейросетей — речь идет о нейронных сетях нервных клеток живых организмов.
Только ленивый не слышал сегодня о существовании и разработке нейронных сетей и такой сфере, как машинное обучение. Для некоторых создание нейросети кажется чем-то очень запутанным, однако на самом деле они создаются не так уж и сложно. Как же их делают? Давайте попробуем самостоятельно создать нейросеть прямого распространения, которую еще называют многослойным перцептроном. В процессе работы будем использовать лишь циклы, массивы и условные операторы. Что означает этот набор данных? Только то, что нам подойдет любой язык программирования, поддерживающий вышеперечисленные возможности. Если же у языка есть библиотеки для векторных и матричных вычислений (вспоминаем NumPy в Python), то реализация с их помощью займет совсем немного времени. Но мы не ищем легких путей и воспользуемся C#, причем полученный код по своей сути будет почти аналогичным и для прочих языков программирования.
Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.
Иными словами, вес синопса не может быть меньше минус 1 и не может быть больше 1. На текущем этапе вам важно понимать то, что веса мы, грубо говоря, взяли с потолка. Это значит, что столь важные для нас веса синапса, выявляющие взаимосвязь между входными данными и результатом, сейчас непригодны к использованию. А значит, мы должны эту ситуацию как-то исправить. Я сейчас говорю о том, чтобы провести нашу нейронку через так называемый процесс обучения нейросети. Это позволит нам приблизить веса к более верным значениям, а значит, правильно выявлять взаимосвязь. В данное время существуется сразу несколько методов обучения нейросети. Например, это знаменитый метод обратного распространения, на английском Backpropagation. Еще есть метод упругого распространения, или же Resilient Propagation.
Обновление весовых коэффициентов
Затем нам понадобится веса для синапсов. Именно они будут выявлять взаимосвязь между входными данными и результатом. Сейчас просто запомните, что именно веса будут оказывать наибольшую роль в определении результата и чуть позже в коде мы воспользуемся популярным решением для инициализации весов. В частности, веса будут инициализироваться генератором случайных чисел. Это довольно важно, потому что если бы был способ найти идеальные начальные веса, то дальнейшее обучение сети просто не требовалось бы.
Давайте поймем почему формула имеет такой вид. Сначала нам нужно учесть то, что мы хотим скорректировать вес пропорционально размеру ошибки. Далее ошибка умножается на значение, поданное на вход нейрона, что, в нашем случае, 0 или 1. Если на вход был подан 0, то вес не корректируется. И в конце выражение умножается на градиент сигмоиды. Разберемся в последнем шаге по порядку:
А начнем из простого и распространенного примера. Допустим, у нас есть какая-то проблема, которую наша нейронка должна уметь решать. Во всех учебниках и уроках по нейронкам обычно можно встретить вот эту таблицу. Здесь вы видите набор входных и выходных данных. Можете попробовать поставить видео на паузу и вычислить самостоятельно связь между этими данными. Хотя здесь нет ничего сложного, я думаю, уже видно, что в выходном столбце оказываются значения из первого столбца входного массива. На данном этапе ваш мозг, при помощи своих нейронных связей, синапсов и кое-чего еще, уже смог решить данную проблему и научиться, как ее решать впоследствии.
Хауди-хо, друзья! Недавно вы просили меня рассказать, как создать свою собственную нейронную сеть с нуля. Поэтому сегодня мы с вами этим и займемся. Создадим простейшую нейронную сеть, а именно Перцептрон. И на самом деле это не так сложно, как может показаться на первый взгляд. Дело в том, что нейронные сети как таковые базируются на определенных алгоритмах и математических функциях. Здесь можно встретить сигмоиду, линейную регрессию и угродительность. Но как мы знаем, чтобы пользоваться формулами, не обязательно понимать, как они работают.
Для уменьшения ошибки нейронной сети надо поменять весовые коэффициенты, причем послойно. Каким же образом это осуществить? Ничего сложного в этом нет: надо воспользоваться методом градиентного спуска. То есть нам надо рассчитать градиент по весам и сделать шаг от полученного градиента в отрицательную сторону. Давайте вспомним, что на этапе прямого распространения мы запоминали входные сигналы, а во время обратного распространения ошибки вычисляли дельты, причем послойно. Как раз ими и надо воспользоваться в целях нахождения градиента. Градиент по весам будет равняться не по компонентному перемножению дельт и входного вектора. Дабы обновить весовые коэффициенты, снизив таким образом ошибку нейросети, нужно просто вычесть из матрицы весов итог перемножения входных векторов и дельт, помноженный на скорость обучения. Все вышеперечисленное можно записать в следующем виде:
Говоря проще, ИНС можно назвать неким «черным ящиком», превращающим входные данные в выходные данные. Если же посмотреть на это с точки зрения математики, то речь идет о том, чтобы отобразить пространство входных X-признаков в пространство выходных Y-признаков: X → Y. Таким образом, нам надо найти некую F-функцию, которая сможет выполнить данное преобразование. На первом этапе этой информации достаточно в качестве основы.
Пишем код
Конечно, после сигмоида мы никогда не получим такие значения, но и результат после обучения нашей нейронки сложно назвать хоть чем-то хотя бы близко похожим на то, что нам нужно. И происходит это потому, что метод обратного распространения подразумевает многократное обучение нейронной сети. В коде которого будет производиться регулирование в соответствии с уже известными алгоритмами выравнивания весов.
Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.
Человеческий мозг состоит из ста миллиардов клеток, которые называются нейронами. Они соединены между собой синапсами. Если через синапсы к нейрону придет достаточное количество нервных импульсов, этот нейрон сработает и передаст нервный импульс дальше. Этот процесс лежит в основе нашего мышления. Мы можем смоделировать это явление, создав нейронную сеть с помощью компьютера. Нам не нужно воссоздавать все сложные биологические процессы, которые происходят в человеческом мозге на молекулярном уровне, нам достаточно знать, что происходит на более высоких уровнях. Для этого мы используем математический инструмент — матрицы, которые представляют собой таблицы чисел. Чтобы сделать все как можно проще, мы смоделируем только один нейрон, к которому поступает входная информация из трех источников и есть только один выход. 3 входных и 1 выходной сигнал Наша задача — научить нейронную сеть решать задачу, которая изображена в ниже. Первые четыре примера будут нашим тренировочным набором. Получилось ли у вас увидеть закономерность? Что должно быть на месте вопросительного знака — 0 или 1?
Дабы найти значение ошибки E, надо найти сумму квадратов разности векторных значений, которые были выданы нейронной сетью в виде ответа, а также вектора, который ожидается увидеть при обучении. Еще надо будет найти дельту каждого слоя и учесть, что для последнего слоя дельта будет равняться векторной разности фактического и ожидаемого результатов, покомпонентно умноженной на векторное значение производных последнего слоя:
Когда мы узнаем дельту последнего слоя, мы сможем найти дельты и всех предыдущих слоев. Чтобы это сделать, нужно будет лишь перемножить для текущего слоя транспонированную матрицу с дельтой, а потом перемножить результат с вектором производных функции активации предыдущего слоя:
Один нейрон может превратить в одну точку входной вектор, но по условию мы желаем получить несколько точек, т. к. выходное Y способно иметь произвольную размерность, которая определяется лишь ситуацией (один выход для XOR, десять выходов, чтобы определить принадлежность к одному из десяти классов, и так далее). Каким же образом получить n точек? На деле все просто: для получения n выходных значений, надо задействовать не один нейрон, а n. В результате для каждого элемента выходного Y будет использовано n разных взвешенных сумм от X. В итоге мы придем к следующему соотношению: