Содержание статьи
Как написать простую нейросеть на Python
Формула корректировки весов
Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.
Кроме того, необходимо выбрать метод оптимизации для обучения нейронной сети. Оптимизатор используется для изменения весов нейронной сети в процессе обучения, чтобы минимизировать функцию потерь. Один из наиболее популярных оптимизаторов — это алгоритм стохастического градиентного спуска (SGD). Он обновляет веса нейронной сети в направлении, противоположном градиенту функции потерь.
Рекуррентные нейронные сети – это тип нейронных сетей, который используется для работы с последовательными данными, такими как звуковые сигналы или текстовые данные. Рекуррентные слои в этих нейронных сетях позволяют нейронной сети запоминать информацию из предыдущих шагов и использовать ее для принятия решения на текущем шаге. Это позволяет рекуррентным нейронным сетям работать с данными разной длины и предсказывать последующие значения в последовательности.
Python является одним из самых популярных языков программирования для создания нейронных сетей, благодаря своей простоте и богатой экосистеме библиотек машинного обучения. В этой статье мы рассмотрим пошаговую инструкцию по созданию простой нейросети на Python, начиная с основных концепций нейронных сетей и заканчивая практическим созданием и обучением модели.
Когда нейронная сеть получает на вход некоторые данные, она проходит через несколько слоев, состоящих из нейронов. Каждый нейрон обрабатывает данные и выдает некоторый результат, который передается следующему слою нейронов. Чтобы нейронная сеть могла правильно работать, ей необходимо научиться извлекать признаки из данных, то есть определять, какие входные значения наиболее важны для принятия решения.
Архитектура нейронных сетей описывает структуру нейронной сети и определяет, как она будет обрабатывать входные данные и выдавать выходные значения. Существует несколько типов архитектур нейронных сетей, каждый из которых предназначен для решения определенных задач.
Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.
После выбора функции активации необходимо выбрать функцию потерь, которая будет измерять ошибку нейронной сети в процессе обучения. Функция потерь должна быть выбрана в зависимости от задачи, которую вы хотите решить. Например, для задачи классификации могут быть использованы функции потерь, такие как кросс-энтропия или среднеквадратичная ошибка.
Функция активации
Искусственные нейроны образуют различные слои, каждый слой выполняет определенную функцию. Внешний источник передает информацию в первый, входной слой. Полученные данные проходят через скрытые слои нейронов и обрабатываются. Выходной слой нейронов возвращает готовый результат работы сети.
В последние годы нейронные сети стали одним из наиболее популярных методов для решения различных задач, таких как классификация изображений, прогнозирование временных рядов, обработка естественного языка, генерация контента и т.д. Они «умеют» извлекать признаки из данных и на основе этих признаков принимать решения, что делает их особенно полезными в сфере искусственного интеллекта.
Простая нейронная сеть на Python создана. В нашем примере разработана сеть, которая может распознавать цифры на изображениях. Вы можете добавлять или изменять слои нейронной сети, экспериментировать с гиперпараметрами, обучать ее на других наборах данных, чтобы улучшить производительность.
Давайте поймем почему формула имеет такой вид. Сначала нам нужно учесть то, что мы хотим скорректировать вес пропорционально размеру ошибки. Далее ошибка умножается на значение, поданное на вход нейрона, что, в нашем случае, 0 или 1. Если на вход был подан 0, то вес не корректируется. И в конце выражение умножается на градиент сигмоиды. Разберемся в последнем шаге по порядку:
Отметим ключевые моменты по разработке нейросети. В первую очередь определите ее структуру: сколько слоев и нейронов будет содержаться в сети. Экспериментируйте с разными конфигурациями, чтобы найти оптимальное соотношение между точностью и производительностью.При обучение модели обращайте внимание на правильность набора данных для обучения и проверки. Не забывайте использовать переобучение модели.
В процессе обучения нейронная сеть корректирует значения весов и смещений таким образом, чтобы минимизировать ошибку на выходе. Для этого используются различные методы оптимизации, такие как стохастический градиентный спуск, а также различные функции потерь, которые позволяют измерить ошибку на выходе нейронной сети.
Как устроены нейросети
Человеческий мозг состоит из ста миллиардов клеток, которые называются нейронами. Они соединены между собой синапсами. Если через синапсы к нейрону придет достаточное количество нервных импульсов, этот нейрон сработает и передаст нервный импульс дальше. Этот процесс лежит в основе нашего мышления. Мы можем смоделировать это явление, создав нейронную сеть с помощью компьютера. Нам не нужно воссоздавать все сложные биологические процессы, которые происходят в человеческом мозге на молекулярном уровне, нам достаточно знать, что происходит на более высоких уровнях. Для этого мы используем математический инструмент — матрицы, которые представляют собой таблицы чисел. Чтобы сделать все как можно проще, мы смоделируем только один нейрон, к которому поступает входная информация из трех источников и есть только один выход. 3 входных и 1 выходной сигнал Наша задача — научить нейронную сеть решать задачу, которая изображена в ниже. Первые четыре примера будут нашим тренировочным набором. Получилось ли у вас увидеть закономерность? Что должно быть на месте вопросительного знака — 0 или 1?
Нейроны группируются в слои. Входной слой получает входные данные, скрытые слои обрабатывают информацию, а выходной слой отдает результат. Слои обычно соединяются последовательно, иногда могут встречаться и другие типы архитектур, например сверточные нейронные сети.
При создании своей нейросети на Python необходимо выбрать подходящую функцию активации в зависимости от задачи, которую вы хотите решить. Кроме того, важно убедиться, что функция активации выбрана правильно, чтобы избежать проблем, таких как затухание градиента.
Функция активации определяет, как нейрон будет реагировать на входные данные. Она может быть линейной или нелинейной, и ее выбор зависит от конкретной задачи, которую решает нейронная сеть. Эта функция помогает сети обучаться более сложным взаимодействиям между данными.
Но нейронные сети — все же не человеческий мозг. Мозг сложнее, объемнее, в нем намного больше нейронов, чем в любой компьютерной нейросети. Поэтому чрезмерное обучение может сделать хуже. Например, переобученная нейросеть может начать распознавать предметы там, где их нет — так люди иногда видят лица в фарах машин и принимают пакеты за котов. А в случае с искусственной нейронной сетью такой эффект еще явнее и заметнее. Если же учить нейросеть на нескольких разнородных данных, скажем, сначала обучить считать числа, а потом — распознавать лица, она просто сломается и начнет работать непредсказуемо. Для таких задач нужны разные нейросети, разные структуры и связи.
Так часто происходит в реальных задачах, например, при распознавании предметов. Не у всех из них есть жесткие критерии: скажем, гипертрофированного мультяшного персонажа мы по-прежнему различаем как человека, хотя у него совсем другие пропорции. Нейронную сеть сложно научить похожему — но современные системы могут справиться и с этим.