Содержание статьи
Искусственный интеллект на Python для детей
Как написать это на Python
Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.
Но в том-то и дело, что нейросети придется действовать самостоятельно и напрямую взять и возвести число в степень мы ей тоже не скажем, хотя в Python имеется такой функционал. Предположим, у нас есть выражение 5*5 = 25. Нейросеть получит 5 и затем будет пропускать ее через слои нейронов. Станет умножать числа и свои результаты на какие-то веса, применять функции, пока не приблизится к правильному результату, не поймет, как мы получили этот результат.
Специалисты, занимающиеся технологическим прогнозированием, называют ИИ (artificial intellect) одной из четырех технологий, которые в ближайшее время приведут к формированию «нового экономического уклада» и перевернут нашу жизнь сильнее, чем она изменилась с начала 50-х годов XX века, при первой научно-технической революции.
Нейросеть создается из множества сущностей как нейроны, эти конструкции не запрограммированы на узкую задачу, а принимают любую информацию, передают дальше, изучают и могут по мере прохождения генерировать реакцию на нее «на лету», в зависимости от анализа на текущий момент. Обсчитывает искусственные компьютерные «нейроны» компьютер, по приказу из Python. Нейросеть ниже принимает на вход картинку, а на выходе дает число, то есть предположение о том, нарисована ли на картинке кошка или это собака. Если нейросеть ошибается, то накапливает опыт. В следующий раз она с меньшей вероятностью получит ошибку.
Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.
В параметре loss метода compile можно определить метод расчета ошибок, от этого зависят результаты измерений. Для учебной нейросети мы выбрали mse — средние квадратичные ошибки. Подробнее об этом можно посмотреть в документации к библиотеке. Также необходимо задать «оптимизатор». Это простая нейросеть на Python, поэтому мы по максимуму используем потенциал готовых функций и методов. Есть несколько алгоритмов взаимодействия нейронов сети, их можно выбрать именно тут.
Так часто происходит в реальных задачах, например, при распознавании предметов. Не у всех из них есть жесткие критерии: скажем, гипертрофированного мультяшного персонажа мы по-прежнему различаем как человека, хотя у него совсем другие пропорции. Нейронную сеть сложно научить похожему — но современные системы могут справиться и с этим.
Готовить наше «восстание машин» будем на браузерной платформе Google Collab. Ее плюс в том, что все библиотеки Python там уже добавлены. Вам нужно только прописать их подключение, и можно обращаться к фреймворкам, программируя прямо в браузере. Еще один довод «за» — возможность запускать код построчно, то есть передавать интерпретатору не весь скрипт, а только ту его часть, на результатах которой вы хотите сосредоточиться. Подключаем библиотеки оператором Import:
Data Scientist или Python-разработчик? А может, третий неочевидный вариант? Узнайте, какая IT-специальность подходит вам идеально на бесплатной онлайн-профориентации «IT-рентген».
Больше нейронов. В нашей тренировочной нейросети только один нейрон. Но если нейронов будет больше — каждый из них сможет по-своему реагировать на входные данные, соответственно, на следующие нейроны будут приходить данные с разных синапсов. Значит — больше вариативность, «подумать» и передать сигнал дальше может не один нейрон, а несколько. Можно менять и формулу передачи, и связи между нейронами — так получаются разные виды нейронных сетей.
Другие методы и формулы. Чтобы нейроны обучались, нужно задать формулу корректировки весов — мы говорили про это выше. Если нейронов много, то формулу нужно как-то распространить на все из них. Для этого используется метод градиентного спуска: рассчитывается градиент по весам, а потом от него делается шаг в меньшую сторону. Звучит сложно, но на самом деле для этого есть специальные формулы и функции.
Человеческий мозг состоит из ста миллиардов клеток, которые называются нейронами. Они соединены между собой синапсами. Если через синапсы к нейрону придет достаточное количество нервных импульсов, этот нейрон сработает и передаст нервный импульс дальше. Этот процесс лежит в основе нашего мышления. Мы можем смоделировать это явление, создав нейронную сеть с помощью компьютера. Нам не нужно воссоздавать все сложные биологические процессы, которые происходят в человеческом мозге на молекулярном уровне, нам достаточно знать, что происходит на более высоких уровнях. Для этого мы используем математический инструмент — матрицы, которые представляют собой таблицы чисел. Чтобы сделать все как можно проще, мы смоделируем только один нейрон, к которому поступает входная информация из трех источников и есть только один выход. 3 входных и 1 выходной сигнал Наша задача — научить нейронную сеть решать задачу, которая изображена в ниже. Первые четыре примера будут нашим тренировочным набором. Получилось ли у вас увидеть закономерность? Что должно быть на месте вопросительного знака — 0 или 1?
За это у нас отвечают методы model.add и функция Dense. Ее параметры, которые мы здесь прописали надо понимать так: слой с 10 нейронами, в который на вход передается 1 число и второй слой — 1 нейрон, получающий 10 чисел. Зададим параметры того, как нейросеть будет обучаться.
Давайте поймем почему формула имеет такой вид. Сначала нам нужно учесть то, что мы хотим скорректировать вес пропорционально размеру ошибки. Далее ошибка умножается на значение, поданное на вход нейрона, что, в нашем случае, 0 или 1. Если на вход был подан 0, то вес не корректируется. И в конце выражение умножается на градиент сигмоиды. Разберемся в последнем шаге по порядку:
Две эти IT-дисциплины сегодня реализуют концепцию ИИ. Задачи в этих сферах, которые на Java или других языках могут потребовать сотни строк кода, на Python решаются несколькими командами. Это происходит за счет отличного набора библиотек к Python: Keras, Scikit-learn, TensorFlow, NumPy, Pandas. Изучение языка Python не представляет никакой сложности. Дочитайте статью до конца и вы создадите свой первый ИИ, точнее, нейросеть, которая будет возводить в степень любое заданное число.
Проекты в области искусственного интеллекта сейчас выходят на новый уровень. Мы это можем понять по распространению техники, в основе которой они лежат: личные помощники (в том числе умные колонки), спам-фильтры, системы поимки мошенников, поисковики, рекомендательные системы и многое другое.
Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.