Содержание статьи
Как разработать искусственный интеллект: пошаговое руководство
Стадия 5. Работа
Когда технологическая основа готова, а основные алгоритмы прописаны и вручную протестированы, начинается длительный период тренировки. Чтобы сделать самостоятельный и универсальный интеллект, необходимо углубляться в изучение теории, а также хрестоматийных пособий, например:
Далеко не все правильно понимают, что скрывается за термином «искусственный интеллект» или AI (Artificial Intelligence). В сети встречаются объяснения, что ИИ — компьютер или система, способная думать и принимать разумные решения. Это не совсем верно. Искусственный интеллект — это алгоритмы, способные решать сложные задачи, для которых требуется наличие человеческого интеллекта.
Если вы только начинаете осваивать область AI и создаете простых ботов, стоит на листке бумаги разобрать все возможные алгоритмы игры «Крестики-нолики» с полем 3 на 3. Она подходит для обучения, поскольку имеет крайне мало возможных действий. Новичкам нужно выяснить:
А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.
Если надежды на создание собственного AI, который сможет приблизиться к уровню человека, не разбились о гору теоретической литературы, можно приступать к изучению языков. Есть 3 языка программирования, которые стали популярными в области искусственного разума:
Искусственный интеллект создают с помощью machine learning model и deep learning — методов, которые позволяют программе изучить массивы информации и принимать решения или создавать похожие объекты. ML-модели вместе с технологией нейронных сетей используют для решения разных задач:
К этой категории относят ботов в компьютерных играх, голосовых помощников и первые версии нейросетей. Особенность слабого AI — узкая специализация. Они не могут выйти за рамки скриптов и функций, которые были заложены разработчиком. Любая непредсказуемая ситуация поставит компьютер в тупик
Этот язык программирования разработали для выполнения статистических вычислений и математического анализа, что делает R лучшим выбором для работы с ботми. У него большая коллекция библиотек для работы со статистикой (например, caret, mlr и другие), помогающих реализовать точные AI-модели. Хотя R сложнее Python, освоить данный язык не так трудно, как кажется. У него логичный синтаксис, в открытых источниках достаточно информации для изучения.
Стадия 3. Развитие
К слову, если вы всё-таки взялись за язык Python, то создать довольно простого бота можно, обратившись к этому подробному мануалу. Для других языков, таких как C++ или Java, вам также не составит труда найти пошаговые материалы. Почувствовав, что за созданием ИИ нет ничего сверхъестественного, вы сможете смело закрыть браузер и приступить к личным экспериментам.
Математика — этот тот научный плацдарм, на котором будет строиться ваше дальнейшее программирование. Без знания и понимания этой теории все задумки быстро разобьются о взаимодействие с человеком, ведь искусственный разум на самом деле не больше, чем набор формул.
На этой неделе вы могли прочитать крайне мотивирующей кейс от ученика GeekBrains Валерия Турова, который изучил профессию «Программист Java», где он рассказал об одной из своих целей, которая привела в профессию — желанию познать принцип работы и научиться создавать самому игровых ботов.
Главный аспект создания искусственного интеллекта — разработка моделей и алгоритмов, которые способны самостоятельно обучаться с опорой на поступающие данные. ИИ постоянно находится в процессе совершенствования навыков и способностей, что позволяет сделать результаты работы лучше и подготовить систему к решению новых задач.
Во время обучения рекомендуется регулярно заниматься проверкой промежуточных результатов. В зависимости от качества материала качество работы AI может не только расти, но и падать. К примеру, недавно ChatGPT «отупел» в ходе общения с человеком, из-за чего потерял возможность правильно определять тип числа.
Разработчики AI должны стремиться к созданию этичной технологии, которая сделает человеческую лучше, а не добавит новые трудности и угрозы, включая захват мира, о котором уже много лет пишут фантасты. Терминатором управляет совершенный ИИ, до которого, конечно, далеко, но когда-то полет на самолете казался фантастикой.
Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является математика. Да-да, искусственный интеллект куда сложнее написания прикладных программ — одних знаний о проектировании ПО вам не хватит.
Это распространенный язык для работы с ИИ и нейросетями. У популярности есть 2 причины: гибкость и простота изучения. Кроме того, у Python большое сообщество, поэтому в интернете можно найти готовые библиотеки и фреймворки, упрощающих реализацию ботов. Например, TensorFlow, PyTorch и Keras помогут создать сложные ML-модели ChatGPT и LLaMA.