Содержание статьи
Искусственный интеллект на Python для детей
Что такое нейросеть
Две эти IT-дисциплины сегодня реализуют концепцию ИИ. Задачи в этих сферах, которые на Java или других языках могут потребовать сотни строк кода, на Python решаются несколькими командами. Это происходит за счет отличного набора библиотек к Python: Keras, Scikit-learn, TensorFlow, NumPy, Pandas. Изучение языка Python не представляет никакой сложности. Дочитайте статью до конца и вы создадите свой первый ИИ, точнее, нейросеть, которая будет возводить в степень любое заданное число.
Больше нейронов. В нашей тренировочной нейросети только один нейрон. Но если нейронов будет больше — каждый из них сможет по-своему реагировать на входные данные, соответственно, на следующие нейроны будут приходить данные с разных синапсов. Значит — больше вариативность, «подумать» и передать сигнал дальше может не один нейрон, а несколько. Можно менять и формулу передачи, и связи между нейронами — так получаются разные виды нейронных сетей.
В параметре loss метода compile можно определить метод расчета ошибок, от этого зависят результаты измерений. Для учебной нейросети мы выбрали mse — средние квадратичные ошибки. Подробнее об этом можно посмотреть в документации к библиотеке. Также необходимо задать «оптимизатор». Это простая нейросеть на Python, поэтому мы по максимуму используем потенциал готовых функций и методов. Есть несколько алгоритмов взаимодействия нейронов сети, их можно выбрать именно тут.
Нейросеть создается из множества сущностей как нейроны, эти конструкции не запрограммированы на узкую задачу, а принимают любую информацию, передают дальше, изучают и могут по мере прохождения генерировать реакцию на нее «на лету», в зависимости от анализа на текущий момент. Обсчитывает искусственные компьютерные «нейроны» компьютер, по приказу из Python. Нейросеть ниже принимает на вход картинку, а на выходе дает число, то есть предположение о том, нарисована ли на картинке кошка или это собака. Если нейросеть ошибается, то накапливает опыт. В следующий раз она с меньшей вероятностью получит ошибку.
Но нейронные сети — все же не человеческий мозг. Мозг сложнее, объемнее, в нем намного больше нейронов, чем в любой компьютерной нейросети. Поэтому чрезмерное обучение может сделать хуже. Например, переобученная нейросеть может начать распознавать предметы там, где их нет — так люди иногда видят лица в фарах машин и принимают пакеты за котов. А в случае с искусственной нейронной сетью такой эффект еще явнее и заметнее. Если же учить нейросеть на нескольких разнородных данных, скажем, сначала обучить считать числа, а потом — распознавать лица, она просто сломается и начнет работать непредсказуемо. Для таких задач нужны разные нейросети, разные структуры и связи.
Но в том-то и дело, что нейросети придется действовать самостоятельно и напрямую взять и возвести число в степень мы ей тоже не скажем, хотя в Python имеется такой функционал. Предположим, у нас есть выражение 5*5 = 25. Нейросеть получит 5 и затем будет пропускать ее через слои нейронов. Станет умножать числа и свои результаты на какие-то веса, применять функции, пока не приблизится к правильному результату, не поймет, как мы получили этот результат.
Формула корректировки весов
Давайте поймем почему формула имеет такой вид. Сначала нам нужно учесть то, что мы хотим скорректировать вес пропорционально размеру ошибки. Далее ошибка умножается на значение, поданное на вход нейрона, что, в нашем случае, 0 или 1. Если на вход был подан 0, то вес не корректируется. И в конце выражение умножается на градиент сигмоиды. Разберемся в последнем шаге по порядку:
Готовить наше «восстание машин» будем на браузерной платформе Google Collab. Ее плюс в том, что все библиотеки Python там уже добавлены. Вам нужно только прописать их подключение, и можно обращаться к фреймворкам, программируя прямо в браузере. Еще один довод «за» — возможность запускать код построчно, то есть передавать интерпретатору не весь скрипт, а только ту его часть, на результатах которой вы хотите сосредоточиться. Подключаем библиотеки оператором Import:
Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.
Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.
Вы знали, что разработчики нейросети LaMDA в 2022 году заявили о появлении у их детища сознания? А ChatGPT стал самым быстрорастущим сервисом в истории. К слову, сам ChatGPT является примером того, как создать нейросеть на Python, потому что он написан именно на этом языке программирования.
Этот язык программирования стремительно развивается и по данным наиболее авторитетного рейтинга языков TIOBE на апрель 2023 года, является самым востребованным в мире. Не в последнюю очередь его положение связано с тем, что сообщество разработчиков глубоко усовершенствовали его, чтобы он лучше других подходил для машинного обучения и создания нейросетей.
Человеческий мозг состоит из ста миллиардов клеток, которые называются нейронами. Они соединены между собой синапсами. Если через синапсы к нейрону придет достаточное количество нервных импульсов, этот нейрон сработает и передаст нервный импульс дальше. Этот процесс лежит в основе нашего мышления. Мы можем смоделировать это явление, создав нейронную сеть с помощью компьютера. Нам не нужно воссоздавать все сложные биологические процессы, которые происходят в человеческом мозге на молекулярном уровне, нам достаточно знать, что происходит на более высоких уровнях. Для этого мы используем математический инструмент — матрицы, которые представляют собой таблицы чисел. Чтобы сделать все как можно проще, мы смоделируем только один нейрон, к которому поступает входная информация из трех источников и есть только один выход. 3 входных и 1 выходной сигнал Наша задача — научить нейронную сеть решать задачу, которая изображена в ниже. Первые четыре примера будут нашим тренировочным набором. Получилось ли у вас увидеть закономерность? Что должно быть на месте вопросительного знака — 0 или 1?
Проекты в области искусственного интеллекта сейчас выходят на новый уровень. Мы это можем понять по распространению техники, в основе которой они лежат: личные помощники (в том числе умные колонки), спам-фильтры, системы поимки мошенников, поисковики, рекомендательные системы и многое другое.