Что такое нейросети: как и где используются нейросети, какие виды нейросетей существуют
Какие задачи умеют решать нейросети
Разобрали техническую сторону функционирования нейронных сетей, перейдем к практической части. Сложные процессы и формулы остаются недоступными для пользователей: они вводят запрос, через несколько секунд получают результат. На практике все сложнее, для примера возьмем нейронку по генерации картинок:
Так ли это – покажет время, но уже сегодня генеративный ИИ постепенно вытесняет с рынка кадры. Например, под угрозой авторы контента для наполнения сайтов, графические дизайнеры и иллюстраторы, онлайн-консультанты (им на смену приходят чат-боты), специалисты по озвучиванию и многие другие. Второе направление – отрасли, которые можно автоматизировать, речь идет о логистике, доставке, упаковке и аналогичных направлениях.
Предоставление информации. Когда нейросеть обучают, ей «показывают» данные, по которым необходимо что-то предсказать, и эталонные правильные ответы для них — это называется обучающей выборкой. Информации должно быть много — считается, что минимум в десять раз больше, чем количество нейронов в сети. Во время обучения нейросети показывают какую-либо информацию и говорят, что это такое, т.е. дают ответ. Все данные представляются не посредством слов, а с помощью формул и числовых коэффициентов. Например, изображению женщины соответствует «1», а изображению мужчины — «0». Это простой пример; реальные сети устроены сложнее. Преобразования. Входные нейроны получают информацию, преобразуют ее и передают дальше. Содержание информации автоматически обрабатывается с помощью формул и превращается в математические коэффициенты. Примерно как то, что мы видим глазами, превращается в нервные импульсы и передается в мозг. Он их обрабатывает, и человек понимает, что находится вокруг него. Здесь принцип похож. Обработка и выводы. У каждого нейрона есть «вес» — число внутри него, рассчитанное по особым алгоритмам. Он показывает, насколько показания нейрона значимы для всей сети. Соответственно, во время обучения веса нейронов автоматически меняются и балансируются. В результате складывается ситуация, когда определенные нейроны реагируют, например, на силуэт человека — и выдают информацию, которая преобразуется в ответ: «Это человек». При этом человека не нужно описывать как набор математических фигур — во время обучения нейронная сеть сама задает значения весов, которые определяют его. Результат. Выводом нейронной сети становится набор формул и чисел, которые преобразуются в ответ. Например, если изображение мужчины — «0», а женщины — «1», то результат 0,67 будет означать что-то вроде «Скорее всего, это женщина». Нейросеть из-за своей структуры не может дать абсолютно точный ответ — только вероятность. И из-за закрытости и нестабильности нейронов ее показания могут различаться даже для одинаковых выборок.
В вопросе о том, что создают нейросети нет ограничений: они эффективно генерируют контент, анализируют, обрабатывают огромные массивы данных, рисуют картинки, автоматизируют маркетинг и помогают решать другие задачи, независимо от отраслей. Выступают в роли помощников, снимают часть рутинных процессов и активно внедряются в кейсы крупных компаний. В ближайшие годы генеративный ИИ не сможет полностью заменить людей, но умение правильно пользоваться продуктами – огромный плюс для любого специалиста, стремящегося к повышению продуктивности и качества финишного результата.
ИИ качественно выполняет проверку, улучшение и дополнение кода. Поддерживают более 50 языков программирования, некоторые сети способны писать код на базе запросов на естественном языке + автодополнение. Доступны инструменты для создателей сайтов, компьютерных программ, мобильных приложений, прочих продуктов.
Не совсем. Нейронные сети относят к глубокому обучению (Deep Learning), которое является частью машинного, но от классического ML подход сильно отличается. В стандартном машинном обучении программе предварительно рассказывают, как выглядит то, что она должна сделать. Например, если нужно отличить мужчину от женщины, потребуется «объяснить» модели, в чем принципиальные различия между фигурами. Это делается с помощью математических формул и абстракций, которые будут описывать параметры. Выше мы говорили про понятие карты признаков — по сути, это она и есть. При обучении нейросети такой задачи не стоит. Признаки сеть находит сама, их не нужно описывать. Необходимо только задать коэффициенты и результаты, соответствующие каждому возможному исходу. Это и хорошо, и плохо. Плохо — потому что приводит к уже описанной выше непредсказуемости. Хорошо — потому что дает больше гибкости: два необученных исходника одной и той же сети можно обучить на выполнение двух разных задач. Не понадобится писать другой алгоритм и задавать новые параметры. Можно оставить ту же архитектуру, главное — чтобы она изначально была оптимальной для этого типа задач.
Нейросети применяются для создания визуального контента – это иконки, видеоролики, изображения. Дополнительно стоит выделить написание музыки и озвучку. Есть повышение качества картинок и управление основными параметрами: раскрашивание, черно-белый, редактирование с удалением предметов, дорисовка фона, объединение нескольких фото и другое. Помимо этого, сети умеют переносить в цифровое пространство все нарисованное от руки. Например, дизайнер сделал эскиз макета сайта на бумаге, достаточно сфотографировать его и преобразовать, используя потенциал нейронки.
Основа взаимодействия с генеративным ИИ – запросы пользователей, которые они могут вводить как голосом, так с и помощью клавиатуры. При составлении промтов нужно использовать формулировки, применимые для обычных технических заданий, ориентированных на специалистов. Чем конкретнее изложено требование, тем релевантнее будет результат. В помощь – следующие рекомендации:
Айдентика
Разноплановые «таланты» генеративного AI не на шутку испугали многих специалистов: по данным экспертов некоторые профессии вскоре могут исчезнуть с HR-рынка. В 2024 году Дженсен Хуанг, глава компании Nvidia, во время всемирного правительственного форума (проходил в ОАЭ) призвал более не обучаться программированию. По утверждению Дженсена, в ближайшем будущем кодингом начнут заниматься только нейросети. В качестве перспективной профессии он назвал промт-инжиниринг, связанный с созданием запросов для нейронок. Также акцентировал внимание на том, что получать знания стоит в сферах, связанных с сельским хозяйством, производством, биологией и образованием.
Нейросети обеспечивают создание новых возможностей, однако развитие рынка связано со сложностями – это наращивание вычислительных мощностей и хранилищ данных, компоненты для которых компенсируются за счет импортозамещения и других инструментов. Такие вызовы становятся толчком к развитию: компании, которые займут свободные ниши, могут получить отличный старт.
Российский сегмент генеративного ИИ развивается темпами, существенно опережающими мировые. В 2023 году выручка крупнейших ИИ-поставщиков выросла практически на 90%, но это не предел. Участники рынка отмечают, что качество продуктов не уступает зарубежным аналогам, а государственные программы поддержки и ориентирование на импортозамещение позволяют создавать/дорабатывать то, чего не хватает клиентам. Что сейчас в тренде и на пике развития:
На финише выводится готовое изображение, которое пользователь может сохранить. Доступны новые генерации, если результат не соответствует ожиданиям, а также возможность изменения получившегося визуала. Вместо текстовых запросов можно использовать реальные примеры, загружая собственные картинки, что помогает сети обучаться. Стоит помнить, что по одному и тому же промту выдаются разные варианты, независимо от количества генераций.
С нейросетями немного сложнее, их невозможно запрограммировать один раз и навсегда: они обучаются, самостоятельно пишут алгоритмы и инструкции, проводят сверку с ответами. Например, сеть для генерации изображений: изначально она «увидела» огромное количество картинок с подписями, чтобы научиться определять, что же на них запечатлено. Если нужно обучить нейронку распознавать текст или музыку – применяются подходящие примеры. Рассмотрим, как это работает:
Нейронная сеть – компонент искусственного интеллекта (ИИ или AI), является компьютерной системой, выстроенной на базе искусственных нейронов (вычислительные элементы). Как биологические нейроны в мозге человека, искусственные осуществляют обмен информацией. Не являются классической программой с готовыми алгоритмами, а пишут их в процессе обучения. Например, если генеративному ИИ показать тысячу примеров домов – она будет легко распознавать их в разных вариациях и сюжетах. Чем больше выборка домов, тем выше точность сети. Классическая структура включает в себя 3 слоя искусственных нейронов:
В классическом программировании все очень упорядочено: разработчик пишет инструкцию, программа дает заданный результат. Например, можно указать, как выполняется расчет времени в пути, после чего программа будет делать это точно по конкретному алгоритму.
Нейросети используются в огромном количестве сфер, в первую очередь в тех, где от машины нужна функциональность сродни человеческой. То есть в ситуациях, где нет четко заданного скрипта, описывающего каждый конкретный случай; входные данные могут быть любыми, поэтому нужно уметь обрабатывать все возможные варианты. Хороший пример — робот-ассистент или подсказки в поле поиска. В свое время именно поисковые системы дали толчок развитию методов искусственного интеллекта. Пока с нейронными сетями работают в основном большие компании и холдинги. Для того чтобы создать нейросеть, способную достаточно грамотно работать в сложных условиях, нужны мощные машины и большие наборы обучающих данных. Такие ресурсы могут себе позволить только крупные корпорации. Еще есть стартапы — они в основном работают на арендованных мощностях и концентрируются на создании нейросети под конкретные задачи. Пример — знаменитое приложение Prisma. Отрасль может быть любой. Во всех сферах есть задачи, которые в силах решить нейросеть. Рассмотрим основные области задач, для решения которых используются нейросети. Классификация. Нейросеть получает объект и относит его к определенному классу. Самая первая сеть, перцептрон, решала именно задачи классификации, но очень простые. Сейчас возможности шире: сети могут классифицировать клиентов и выделять аудитории по интересам — вы сталкиваетесь с этой возможностью каждый день, когда ваш электронный почтовый ящик определяет (классифицирует) некоторые письма как спам. Но это не единственный пример: автоматический скоринг в банках, контекстная реклама — это все касается классификации. Распознавание. Задача поставлена иначе: она не в том, чтобы отнести объект к одному из классов, а в том, чтобы найти нужное среди множества данных — например, лицо на картинке. «Умные» фильтры для фотографий работают именно так. Можно вспомнить многочисленные нейросети, которые превращают фотографии в картины маслом или постеры, — они тоже сначала распознают, что находится на изображении. Распознавать можно и текстовые данные, например приложения для определения названия музыкальных треков. Но распознавание — это не только приложения. Это и поиск по картинке, и чтение текста с изображения, и работа «умных» камер слежения. Разнообразные программы для людей с ограниченными возможностями тоже используют возможности распознавания. Сюда же относятся голосовые ассистенты, которые распознают речь. Сейчас нейросети начинают активно применяться в медицине, например распознают информацию на снимках, что облегчает диагностику. Прогнозирование. Третий вариант — нейросети, которые получают входные данные и на их основе что-то предсказывают. Их часто применяют в аналитике, например в финансовом секторе такая сеть может предсказывать поведение рынка, а в маркетинге — тренды и аудитории. Нейросетевые программы, которые дописывают текст или дорисовывают изображение, тоже по сути занимаются прогнозированием. Так же работают поисковые системы: вы начинаете вводить фразу, а вам предлагают ее завершение. Это тоже задача прогнозирования, при
чем интересная — с учетом смысла предыдущих слов. Генерация. Нейронные сети могут сами генерировать контент. Пока он далек от идеального, но программы становятся умнее. Сейчас нейросети могут писать музыку, создавать изображения, и со временем они становятся все больше похожими на настоящие. Это комплексная задача, которая может состоять из нескольких предыдущих. Например, «дорисовка» человека на фотографии — задача распознавания и прогнозирования одновременно. Генерация текста в определенном стиле — классификация плюс прогнозирование.







































