Как работает обучение нейросети

0
17

Обучение нейросети: методы и алгоритмы

Для чего нужны нейронные сети?

Для проверки эффективности обучения нейросети нужно предоставить ей данные из другой части той же выборки, по которой она училась. Если сеть не выдает устраивающих нас ответов, возможны несколько причин появления подобных ошибок. Во-первых, это недостаточный объем данных из окружающей среды. Во-вторых, возможно данные из окружающей среды были недетерминированы. Наконец, не исключен вариант некорректного определения тренировочных и тестовых датасетов.

У нейросетей есть общие черты — например, наличие входного слоя, который принимает информацию на вход. Но много и различий. Для каждой из перечисленных выше задач потребуется своя нейронная сеть. У них будут различаться структуры, архитектура, типы нейронов и многое другое. Создать универсальный алгоритм невозможно, по крайней мере пока, поэтому сети отдельно оптимизируют под определенные спектры задач. Однонаправленные. Нейросети работают в одном направлении — как оригинальный перцептрон. Это значит, что у них нет «памяти», а поток информации передается только в одну сторону. Структура выходит более простой, чем в случае с рекуррентными сетями, о которых мы поговорим ниже. Но это не плохо: для решения некоторых задач простые структуры подходят лучше. Однонаправленные сети хорошо подходят для задач распознавания. Суть примерно та же, что и в случае с восприятием окружающего мира реальным мозгом. Органы чувств получают информацию и передают ее в одном направлении, та в процессе трансформируется и распознается. Мозг делает вывод: «я вижу собаку», «слышна рок-музыка», «на улице холодно». Однонаправленная модель работает по тому же принципу, но более упрощенно. Еще один вариант применения — прогнозирование. Принцип такой же: «На улице тучи — значит, пойдет дождь». Но критерии, по которым нейросети делают выводы, до конца непонятны. Рекуррентные. У этих сетей есть эффект «памяти» благодаря тому, что данные передаются в двух направлениях, а не в одном. В результате они воспринимают предыдущую полученную информацию и могут глубже ее «анализировать». Это полезно, если перед сетью стоит сложная задача вроде перевода текста. Однонаправленная нейросеть переведет каждое слово по отдельности, и получится бессвязная «каша». Рекуррентная сможет учесть контекст и перевести, например, apple tree не как «яблоко дерево», а как «яблоня». Или более сложный пример: идиома that’s a piece of cake в контексте переведется не как «это кусок торта», а как «проще простого» в зависимости от стиля текста. На это сейчас способны не все переводчики. Задачи для рекуррентной сети можно сформулировать так: это работа с большим объемом данных, которые надо разбить на более мелкие и обработать. Причем с учетом связей между друг другом. Правильно настроенная рекуррентная нейронная сеть способна отличать контекст одной ситуации от другой. Это важно, например, при создании «говорящих» ботов: вспомните, как «обижаются» голосовые помощники, если сказать им что-то грубое. Сверточные. Это отдельная категория нейронных сетей, менее закрытая, чем другие, благодаря принципиальной многослойности. Многослойными называются нейронные сети, в которых нейроны сгруппированы в слои. При этом каждый нейрон предыдущего слоя связан со всеми нейронами следующего слоя, а внутри слоев связи между нейронами отсутствуют. Сверточные сети используют для распознавания образов. У них особая структура слоев: часть занимается «свертыванием», преобразованием картинки, а часть — группировкой и распознаванием маленьких дискретных элементов, созданных на сверточных слоях. Таких слоев несколько. Результат — более высокая точность и качественное восприятие информации. Интересный факт: как обычные нейросети были основаны на нейронах в головном мозгу, так сверточные — на структуре зрительной коры. Это та часть мозга, которая отвечает за восприятие картинок. В ней чередуются «простые» и «сложные» клетки: первые реагируют на определенные линии и очертания, вторые — на активацию конкретных простых клеток. Так происходит процесс распознавания образов в мозгу, и примерно так же устроена сверточная нейросеть. Сверточные слои «воспринимают» отдельные элементы картинки как простые клетки — линии. Особые слои, называемые субдискретизирующими, реагируют на конкретные найденные элементы. Чем больше слоев, тем более абстрактные детали способна заметить и определить сеть. На результат работы промежуточных слоев можно посмотреть, если заглянуть в файлы нейросети. Поэтому она и считается менее закрытой. Результат больше всего напоминает карту признаков из машинного обучения.

Вне зависимости от используемого принципа обучение нейросетей состоит из двух ключевых этапов. На первом происходит тренировка — нейронная сеть учится, выстраивает необходимые связи, регулирует веса узлов. Но как мы проверим, насколько эффективно она это делает? Как и в случае с обычными учениками, нейросеть должна пройти экзамен. Естественно, вопросы на этом экзамене должны отличаться от тех, которые были использованы при тренировке, чтобы исключить вариант, что сеть просто «запомнила» правильный ответ. Это и есть второй этап, который называется тестированием.

Не совсем. Нейронные сети относят к глубокому обучению (Deep Learning), которое является частью машинного, но от классического ML подход сильно отличается. В стандартном машинном обучении программе предварительно рассказывают, как выглядит то, что она должна сделать. Например, если нужно отличить мужчину от женщины, потребуется «объяснить» модели, в чем принципиальные различия между фигурами. Это делается с помощью математических формул и абстракций, которые будут описывать параметры. Выше мы говорили про понятие карты признаков — по сути, это она и есть. При обучении нейросети такой задачи не стоит. Признаки сеть находит сама, их не нужно описывать. Необходимо только задать коэффициенты и результаты, соответствующие каждому возможному исходу. Это и хорошо, и плохо. Плохо — потому что приводит к уже описанной выше непредсказуемости. Хорошо — потому что дает больше гибкости: два необученных исходника одной и той же сети можно обучить на выполнение двух разных задач. Не понадобится писать другой алгоритм и задавать новые параметры. Можно оставить ту же архитектуру, главное — чтобы она изначально была оптимальной для этого типа задач.

Структуру нейрона воссоздают при помощи кода. В качестве «аксона» используется ячейка, которая хранит в себе ограниченный диапазон значений. Информация о как бы «нервных импульсах» хранится в виде математических формул и чисел. Связи между нейронами тоже реализованы программно. Один из них передает другому на вход какую-либо вычисленную информацию, тот получает ее, обрабатывает, и затем передает результат уже своих вычислений дальше. Таким образом, информация распространяется по сети, коэффициенты внутри нейронов меняются — происходит процесс обучения.

Нейросети используются в огромном количестве сфер, в первую очередь в тех, где от машины нужна функциональность сродни человеческой. То есть в ситуациях, где нет четко заданного скрипта, описывающего каждый конкретный случай; входные данные могут быть любыми, поэтому нужно уметь обрабатывать все возможные варианты. Хороший пример — робот-ассистент или подсказки в поле поиска. В свое время именно поисковые системы дали толчок развитию методов искусственного интеллекта. Пока с нейронными сетями работают в основном большие компании и холдинги. Для того чтобы создать нейросеть, способную достаточно грамотно работать в сложных условиях, нужны мощные машины и большие наборы обучающих данных. Такие ресурсы могут себе позволить только крупные корпорации. Еще есть стартапы — они в основном работают на арендованных мощностях и концентрируются на создании нейросети под конкретные задачи. Пример — знаменитое приложение Prisma. Отрасль может быть любой. Во всех сферах есть задачи, которые в силах решить нейросеть. Рассмотрим основные области задач, для решения которых используются нейросети. Классификация. Нейросеть получает объект и относит его к определенному классу. Самая первая сеть, перцептрон, решала именно задачи классификации, но очень простые. Сейчас возможности шире: сети могут классифицировать клиентов и выделять аудитории по интересам — вы сталкиваетесь с этой возможностью каждый день, когда ваш электронный почтовый ящик определяет (классифицирует) некоторые письма как спам. Но это не единственный пример: автоматический скоринг в банках, контекстная реклама — это все касается классификации. Распознавание. Задача поставлена иначе: она не в том, чтобы отнести объект к одному из классов, а в том, чтобы найти нужное среди множества данных — например, лицо на картинке. «Умные» фильтры для фотографий работают именно так. Можно вспомнить многочисленные нейросети, которые превращают фотографии в картины маслом или постеры, — они тоже сначала распознают, что находится на изображении. Распознавать можно и текстовые данные, например приложения для определения названия музыкальных треков. Но распознавание — это не только приложения. Это и поиск по картинке, и чтение текста с изображения, и работа «умных» камер слежения. Разнообразные программы для людей с ограниченными возможностями тоже используют возможности распознавания. Сюда же относятся голосовые ассистенты, которые распознают речь. Сейчас нейросети начинают активно применяться в медицине, например распознают информацию на снимках, что облегчает диагностику. Прогнозирование. Третий вариант — нейросети, которые получают входные данные и на их основе что-то предсказывают. Их часто применяют в аналитике, например в финансовом секторе такая сеть может предсказывать поведение рынка, а в маркетинге — тренды и аудитории. Нейросетевые программы, которые дописывают текст или дорисовывают изображение, тоже по сути занимаются прогнозированием. Так же работают поисковые системы: вы начинаете вводить фразу, а вам предлагают ее завершение. Это тоже задача прогнозирования, причем интересная — с учетом смысла предыдущих слов. Генерация. Нейронные сети могут сами генерировать контент. Пока он далек от идеального, но программы становятся умнее. Сейчас нейросети могут писать музыку, создавать изображения, и со временем они становятся все больше похожими на настоящие. Это комплексная задача, которая может состоять из нескольких предыдущих. Например, «дорисовка» человека на фотографии — задача распознавания и прогнозирования одновременно. Генерация текста в определенном стиле — классификация плюс прогнозирование.

ЧИТАТЬ ТАКЖЕ:  Как установить новый фотошоп с нейросетью

Особенности нейронных сетей

В этой статье мы рассмотрели основные типы и методы обучения нейросетей. Это направление продолжает активно развиваться и считается одним из самых перспективных в сфере искусственного интеллекта. В будущем ожидается появление еще более эффективных методов и алгоритмов, которые позволят нейронным сетям решать максимально сложные задачи, сейчас доступные только человеку.

Понятие машинного обучения неразрывно связано с нейросетями. Нейронная сеть является методом в области искусственного интеллекта, который учит компьютеры работать с данными так же, как человеческий мозг. Важно понимать, что нейросети — это не мыслящие объекты, наделенные сознанием. Это сложнейшая база данных с огромным количеством формул.

Как видно из названия, в алгоритме используются приемы, характерные для поведения генов живых организмов. В начале процесса создается случайная популяция нейросетей, каждая из которых имеет случайно заданные параметры. Далее она подвергается естественному отбору, успешность которого определяется поставленной задачей (например, классификацией изображений).

Современные нейронные сети. Когда компьютеры развились до современных мощностей, концепция нейронной сети снова стала привлекательной. К тому моменту ученые успели описать много алгоритмов, которые помогали распространять информацию по нейронам, и предложили несколько структур. Это были как однослойные, так и многослойные сети, однонаправленные и рекуррентные — подробнее мы расскажем о классификации далее. Чем более продвинутыми становились компьютеры, тем больше сложных и интересных задач могли реализовать нейронные сети. Мощность системы играет важную роль, т.к. каждый нейрон постоянно выполняет ресурсоемкие вычисления. Чтобы решить сложную задачу, обычно нужно много нейронов, их масштабная структура и множество математических функций. Понятно, что для этого понадобится очень сильный компьютер.

Он заключается в многократном повторении двух действий — прямого и обратного. Прямое действие — это передача входных данных через нейросеть и вычисление прогнозируемого результата. Данные от входного узла к выходному могут передаваться большим количеством различных путей. Правильным же считается только один, который сопоставляет входные данные с нужными выходными. Поиск этого пути в рассматриваемом алгоритме ведется с помощью петли обратной связи. Делается это следующим образом:

Нейросети действительно используются для решения задач, похожих на те, которые решает человеческий мозг. Но даже мощная нейросеть может ошибиться. И в некоторых случаях цена этой ошибки может быть крайне велика, а ее вероятность намного больше, чем если задачу решает человек. Поэтому сейчас нейронные сети используются скорее для ассистирования, чем для полномасштабной самостоятельной работы. Существуют проблемы, в решении которых машины действительно могут заменить человека. Это некоторые аналитические задачи, а также те, которые связаны с более-менее однообразными действиями. Например, с помощью нейросети может работать робот-почтальон. Но далеко не все задачи можно решить вот так. Например, робот может ответить на более менее стандартные вопросы в банковском приложении, но не поймет, что делать, если человек задаст что-то неочевидное.

Существует достаточно много способов обучения нейронных сетей. Однако все они сводятся к двум основным концепциям: с помощью учителя и без него. В этой связи снова можно провести аналогию с мозгом человека. Люди также способны приобретать опыт или с наставником, способным прочитать курс лекций, направлять и указывать верный путь к решению задачи, или самостоятельно, ориентируясь лишь на собственные наблюдения и полученный опыт. Рассмотрим оба этих принципа более подробно.

Главной особенностью алгоритма является вычисление обновления веса, выполняемое с помощью знака градиента, который указывает направление корректировки. Градиент представляет собой вектор, показывающий направление наибольшего увеличения функции. Он используется для обновления параметров модели с целью уменьшения значения функции ошибки. Алгоритм упругого распространения позволяет адаптировать скорость обучения отдельно для каждого веса. Если знак градиента не меняется, он увеличивает скорость обучения, а если наоборот — уменьшает. Такая регулировка помогает алгоритму гибко перемещаться по весовым пространствам со сложной многомерной архитектурой, быстрее и надежнее находить оптимальные решения.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь