Как работает модель нейросети

0
9

Как работает модель нейросети

Что такое нейронная сеть — объясняем простым языком

При этом для всех процессов большее значение имеют даже не сами нейроны, а синапсы, то есть связь между ними. Каждый из синапсов имеет свой вес, выставленный в случайном порядке, и во время обработки данные, переданные синапсом с большим весом, становятся преобладающими.

С позиций сегодняшнего дня представляется, что нейросети вряд ли полностью заменят человека. Мы ожидаем от них помощи и новых решений задач, стоящих перед человечеством в целом и в конкретных сферах в частности. В будущем взаимодействие человека и нейросетей позволит решать многие глобальные проблемы и создавать условия для существования справедливого и процветающего общества.

В 1969 году вышла книга «Перцептроны» Марвина Минского и Сеймура Паперта, в которой устройства Розенблатта подвергались закономерной критике. Дело в том, что в перцептроне использовалась однослойная нейронная сеть, а потому он не мог выполнять логическую операцию XOR (исключающее ИЛИ). А также на данном этапе компьютеры не обладали достаточной вычислительной мощностью и не могли обработать большой объем данных, который требовался для обучения нейронных сетей.

Как же нейросеть «учится»? Вот один из вариантов обучения: если мы хотим научить сеть распознавать кошек на фотографиях, мы «показываем» ей много фотографий этих животных и фото, где их нет. Нейросеть «анализирует» эти фотографии и ищет уникальные особенности, которые отличают кошек от других объектов.

В 1949 году физиолог Дональд Хебб высказал гипотезу, что обучение в мозге человека происходит за счет изменения силы синаптических связей между нейронами. Именно идея Хебба позволила создать самообучающиеся сети. Аналогом силы синоптических связей в них стали разные массы искусственных синапсов. Практическое воплощение концепция нейросетей получила в 1958 году, когда нейрофизиолог Фрэнк Розенблатт создал перцептрон – компьютерную программу, а также физическое устройство, которое можно считать первой нейросетью.

Существуют менее распространенные виды нейросетей: сеть радиально-базисных функций и самоорганизующиеся карты. К последним относится, например, самоорганизующаяся карта Кохонена, применяемая для моделирования, прогнозирования и в разработке компьютерных игр.

Вместо того, чтобы бояться замены, человечеству стоит продолжать пользоваться нейросетями как инструментами для развития и улучшения своих способностей. Взаимодействие человека и нейросетей в конечном итоге несомненно приведёт к синергии, которая откроет людям новые возможности и позволит улучшить качество их жизни.

Структура. Нейросеть состоит из искусственных нейронов, которые соединяются между собой. У самой примитивной нейронной сети один слой нейронов, у более сложных — несколько. Часто каждый слой занимается своей задачей, например, один распознает, другой преобразует.

Зачем нужны нейросети

В составе актуальных нейросетей есть три слоя нейронов: входной, выходной и скрытый. Первый нейронов располагает только входными данными (например, вашим запросом в чат). На последующие слои уже попадает информация со всех предыдущих слоев. Затем с помощью функции активации удаляются все значения, которые выпадают из требуемого диапазона (не соответствуют вашему запросу). Наконец, на выходных нейронах появляется итоговый результат.

Нейросеть, еще называемая искусственной нейронной сетью или ИНС, – это математическая модель, программа или устройство, построенные по принципу биологической сети нейронов. Другими словами – по тому же принципу, по которому работает человеческий мозг. В основе каждой нейросети – огромное количество простых процессоров, представляющих собой искусственные нейроны. И, хотя по отдельности каждый процессор очень простой в сравнении с привычными компьютерами, их общая сеть с управляемым взаимодействием позволяет решать сложные задачи.

Сети прямого распространенияеще называют однонаправленными. Сигнал в них передается от входного нейрона к выходному, а обратное движение в принципе невозможно. Сами по себе такие сети ограничены в функциях и потому редко используются, но на их основе создаются более сложные сверточные сети.

ЧИТАТЬ ТАКЖЕ:  Нейросеть которая пишет тексты бесплатно

Например, Google Lens использует для идентификации изображений сверточную сеть из 27 слоев GoogleLeNet. Похожая сеть есть в сервисе распознавания текста Yandex Vision и в видеоувеличителе Transformer-OCR, который способен определять текст на изображениях.

Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.

Объемы отечественного рынка e-commerce значительно выросли с 2022 года. На этом поприще успешно продвигают свой бизнес как частники, так и большие магазины федерального значения. Этому благоприятствовал уход с российского рынка иностранных брендов. Освободившиеся ниши дали дополнительной толчок для развития интернет-бизнеса тем, кто не особо надеялся пробиться сквозь строй опытных иностранных конкурентов. Учитывая изменения на рынке онлайн-торговли, многие начинающие бизнесмены стали задумываться, на какой платформе создавать интернет-магазин, как подобрать хороший вариант. Предлагаем над этой темой поразмышлять вместе.

Однако в 1974 году независимо друг от друга Александр Галушкин и Пол Вербос описали метод обратного распространения ошибки. Он подразумевает, что сигнал об ошибке идет не от входов, а от выходов сети. Это позволяло решить задачу обучения многослойных сетей. К тому же теперь они могли совершать операцию «исключающее ИЛИ».

Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.

Как появилась концепция нейросетей

Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.

В эпоху стремительного развития технологий нейросети занимают особое место, переворачивая представления о возможностях искусственного интеллекта. Взглянем на то, как работают эти удивительные системы и какие невероятные задачи они способны решить. Погружаемся в мир нейросетей и их потенциала!

Принцип действия нейросети не похож на классическую программу. Такой сети не дают четкого алгоритма: ее обучают, чтобы она могла самостоятельно выполнять ту или иную задачу. В результате деятельность программы становится менее предсказуемой, но более вариативной и даже творческой.

На этом этапе искусственный нейрон мог оперировать только с бинарными сигналами (ноль и единица), то есть мало отличался от обычного компьютера. Тогда ученые пришли к выводу, что нужно «научить» нейросети обрабатывать не только бинарные, но и аналоговые, непрерывные сигналы. Так появился новый вид обучения – градиентный спуск по поверхности ошибки. Позднее он лег в основу метода обратного распространения ошибки, который используется до сих пор.

Сверточные нейронные сети —вариант однонаправленных сетей, но в них заложено пять слоев: входной, свертывающий, объединяющий, подключенный и выходной. Такие сети частично имитируют зрительную кору головного мозга и используется для классификации объектов, распознавания изображений и естественного языка, а также для прогнозирования.

Существуют различные типы нейронных сетей, такие как сверточные (CNN), рекуррентные (RNN), трансформеры и ряд других. Сверточные нейросети находят применение для обработки изображений и видео, рекуррентные — используются для анализа последовательностей данных, таких как тексты или временные ряды, а трансформеры предназначены в основном для обработки естественных языков и последовательностей данных.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь