Как работает искусственная нейросеть

0
12

Как работает нейронная сеть: разбираемся с основами

Где применяют нейросети и кто с ними работает

Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.

Глубокие нейронные сети или сети глубокого обучения имеют несколько скрытых слоев с миллионами связанных друг с другом искусственных нейронов. Число, называемое весом, указывает на связи одного узла с другими. Вес является положительным числом, если один узел возбуждает другой, или отрицательным, если один узел подавляет другой. Узлы с более высокими значениями веса имеют большее влияние на другие узлы.
Теоретически глубокие нейронные сети могут сопоставлять любой тип ввода с любым типом вывода. Однако стоит учитывать, что им требуется гораздо более сложное обучение, чем другим методам машинного обучения. Таким узлам нужны миллионы примеров обучающих данных, а не сотни или тысячи, как в случае с простыми сетями.

Нейросети — математические модели и их программное воплощение, основанные на строении человеческой нервной системы. Самую простую нейронную сеть, перцептрон (модель восприятия информации мозгом), вы сможете легко самостоятельно написать и запустить на своем компьютере, не используя сторонние мощности и дополнительные устройства. Пройдите наш тест и узнайте, какой контент подготовил искусственный интеллект, а какой — реальный человек. Чтобы лучше понять, что это такое, попробуем сначала разобраться, как работают биологические нейронные сети — те, что находятся внутри нашего организма. Именно они стали прообразом для машинных нейронных сетей.

Нейросеть не осознает свои действия. Даже если она генерирует контент — она делает это машинально, на основе предыдущих данных, а не благодаря собственному мышлению. Вряд ли нейронная сеть, даже сложная, сможет догадаться, что созданное ей предложение абсурдно и не имеет смысла. Для нее нет такого понятия, как «смысл». Творчество нейросетей — примерно как «речь» говорящего попугая или «китайская комната». Поэтому есть мнение, что книга или картина, написанные нейросетью, не смогут заменить человеческие, даже если алгоритмы будут очень хорошо имитировать наше творчество. Вряд ли много кто захочет читать книгу, если точно известно, что автор не вкладывал туда никаких мыслей. Правда, пока создавать с нуля контент, похожий на настоящий, могут немногие системы. Но вы можете внести свой вклад в их развитие — если освоите, как они работают. Сейчас это направление востребовано как никогда. Тест: нейросеть или человек — сможете определить?

Структуру нейрона воссоздают при помощи кода. В качестве «аксона» используется ячейка, которая хранит в себе ограниченный диапазон значений. Информация о как бы «нервных импульсах» хранится в виде математических формул и чисел. Связи между нейронами тоже реализованы программно. Один из них передает другому на вход какую-либо вычисленную информацию, тот получает ее, обрабатывает, и затем передает результат уже своих вычислений дальше. Таким образом, информация распространяется по сети, коэффициенты внутри нейронов меняются — происходит процесс обучения.

Искусственные нейронные сети постоянно обучаются, используя корректирующие циклы обратной связи для улучшения своей прогностической аналитики. Проще говоря, речь идет о данных, протекающих от входного узла к выходному узлу по множеству различных путей в нейронной сети. Правильным является только один путь, который сопоставляет входной узел с правильным выходным узлом. Чтобы найти этот путь, нейронная сеть использует петлю обратной связи, которая работает следующим образом:

Машинное обучение и глубокое обучение

С другой стороны, при глубоком обучении специалист по работе с данными предоставляет программному обеспечению только необработанные данные. Сеть глубокого обучения извлекает функции самостоятельно и обучается более независимо. Она может анализировать неструктурированные наборы данных (например, текстовые документы), определять приоритеты атрибутов данных и решать более сложные задачи.

Процесс обучения бывает ручным и автоматическим и выглядит обычно так. Нейросети дают на вход разные данные, она анализирует их, а потом ей сообщают, каким должен быть правильный ответ. Сеть устроена так, что будет «стремиться» подогнать веса синапсов, чтобы выдавать верные результаты.

Скрытые слои в сверточных нейронных сетях выполняют определенные математические функции (например, суммирование или фильтрацию), называемые свертками. Они очень полезны для классификации изображений, поскольку могут извлекать из них соответствующие признаки, полезные для распознавания и классификации. Новую форму легче обрабатывать без потери функций, которые имеют решающее значение для правильного предположения. Каждый скрытый слой извлекает и обрабатывает различные характеристики изображения: границы, цвет и глубину.

Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.

В последние годы с развитием нейронных сетей их стали использовать в том числе в SMM. Уже сейчас есть блоги, где изображения и другой контент частично генерируются нейросетями. Применяют их и в развлекательных целях: различные сервисы «перерисовывают» лица людей, делают из них картины, персонажей мультфильмов, вставляют лица в отрывки из кино. Все это возможно благодаря машинному обучению и нейросетям.

При контролируемом обучении специалисты по работе с данными предлагают искусственным нейронным сетям помеченные наборы данных, которые заранее дают правильный ответ. Например, сеть глубокого обучения, обучающаяся распознаванию лиц, обрабатывает сотни тысяч изображений человеческих лиц с различными терминами, связанными с этническим происхождением, страной или эмоциями, описывающими каждое изображение.

Структура. Нейросеть состоит из искусственных нейронов, которые соединяются между собой. У самой примитивной нейронной сети один слой нейронов, у более сложных — несколько. Часто каждый слой занимается своей задачей, например, один распознает, другой преобразует.

Нейронная сеть – это метод в искусственном интеллекте (ИИ), который учит компьютеры обрабатывать данные таким же способом, как и человеческий мозг. Это тип процесса машинного обучения, называемый глубоким обучением, который использует взаимосвязанные узлы или нейроны в слоистой структуре, напоминающей человеческий мозг. Он создает адаптивную систему, с помощью которой компьютеры учатся на своих ошибках и постоянно совершенствуются. Таким образом, искусственные нейронные сети пытаются решать сложные задачи, такие как резюмирование документов или распознавание лиц, с более высокой точностью.

Как работает нейросеть?

Биологические нейронные сети. Нервная система живого существа состоит из нейронов — клеток, которые накапливают и передают информацию в виде электрических и химических импульсов. У нейронов есть аксон — основная часть клетки, и дендрит — длинный отросток на ее конце, который может достигать сантиметра в длину. Дендриты передают информацию с одной клетки на другую и работают как «провода» для нервных импульсов. С помощью специальных шипов они цепляются за другие нейроны, и так сигналы передаются по всей нервной системе. В качестве примера можно привести любое осознанное действие. Например, человек решает поднять руку: импульс сначала появляется в его мозгу, потом через сеть нейронов информация передается от одной клетки к другой. По пути она преобразуется и в конечном итоге достигает клеток в руке. Рука поднимается. Так работает большинство процессов в организме — тех, которые управляются мозгом. Но главная особенность нейронных сетей — способность обучаться. И именно она легла в основу машинных нейросетей. Первые машинные нейросети. В сороковых годах прошлого века люди впервые попытались описать сеть нейронов математически. Затем, в пятидесятых, — воссоздать ее модель с помощью кода. Получилась та самая структура, которую назвали перцептрон. На графиках и иллюстрациях ее обычно рисуют как набор кругов и прямых, их соединяющих — это и есть нейроны, образующие сетку. Перцептрон был проще современных нейросетей. Он имел всего один слой и три типа элементов: первый тип принимал информацию, второй обрабатывал и создавал ассоциативные связи, третий выдавал результат. Но даже элементарная структура уже могла обучаться и более-менее точно решать простые задачи. Например, перцептрон мог ответить, есть ли на картинке предмет, который его научили распознавать. Он был способен отвечать только на вопросы, где есть два варианта ответов: «да» и «нет». После этого развитие нейросетей замедлилось. Существующих на тот момент технологий было недостаточно, чтобы создать мощную систему. Наработки шли неторопливо, но чем больше развивалась компьютерная отрасль, тем больше интереса вызывал концепт.

Из архитектуры и режима работы нейросети следует несколько особенностей, ключевых для понимания направления. Нейросети закрыты. Мы не можем сказать, по каким критериям программа «решает», что на картинке изображен человек или что текст является стихотворением. Все это происходит автоматически; задача разработчика — правильно описать структуру и задать формулы. Примерно так же мы не можем достоверно сказать, что именно происходит в человеческом мозгу, почему он понимает, что собака — это собака, даже если впервые видит незнакомую породу. Если у собаки не будет хвоста, она окажется бесшерстной или покрашенной в неестественный цвет, мы все равно определим ее как собаку — по ряду характеристик, которые до конца не осознаем сами. Нейроны в сетях независимы. Каждый нейрон никак не связан с процессом работы других. Да, они получают друг от друга информацию, но их внутренняя деятельность не зависит от других элементов. Поэтому даже если один нейрон выйдет из строя, другой продолжит работать — это важно в вопросе отказоустойчивости. Подобная устойчивость свойственна и биологическим нейронным сетям, которые продолжают работать, даже если оказываются повреждены. Но у независимости есть и недостаток: из-за нее решения оказываются многоступенчатыми и порой хаотичными, их сложно предсказать и повлиять на них. Нейросети очень гибкие. Так как нейроны сами подбирают критерии и не зависят друг от друга, нейросети более гибкие, чем другие модели машинного обучения. Их архитектура унаследовала важные свойства биологической нервной системы: способность самообучаться и приспосабливаться к новым данным, возможность игнорировать «шумы» и неважные детали входной информации. Как живой человек сможет различить знакомого в толпе, так нейросеть можно научить выделять нужное и отбрасывать ненужное. Гибкость проявляется не только в этом. Нейросети способны решать широкий спектр задач, и их можно адаптировать практически под любые обстоятельства. Нейросети приблизительны. Мы уже говорили: любой результат, выданный нейронной сетью, приблизителен и неточен. Например, сеть, которая распознает картинки, может сказать «Здесь изображена корова» только с определенной вероятностью. И эта вероятность всегда будет меньше единицы, то есть ниже ста процентов. Более того: если два раза показать нейросети одну и ту же картинку, она может выдать разные вероятности в качестве ответа. Различаться они, конечно, будут на сотые и тысячные доли, но это все же неодинаковый, недетерминированный результат. Нейросети могут ошибаться. Любой искусственный интеллект уступает человеческому. Это происходит из-за того, что мощности нашего мозга до сих пор невозможно повторить. В теле человека 86 миллиардов нейронов, и еще не создана сеть, которая хотя бы немного приблизилась к этому числу. В современных нейросетях содержится примерно 10 миллиардов нейронов. Даже при наличии продвинутых формул искусственная нейросеть все равно остается упрощенной моделью — например, в ней нет понятия силы импульса, которое есть в биологических нервах. У биологических нейронных сетей, конечно, тоже бывают ошибки. Но для нейросетей они проявляются более ярко за счет их упрощенной структуры. Читайте также: Искусственный интеллект против сценаристов: как нейросети создают истории

ЧИТАТЬ ТАКЖЕ:  Как использовать нейросеть в photoshop

Сейчас на слуху «творчество нейросетей»: сгенерированные машиной тексты и стихи, несуществующие картины и фотографии людей, почти похожие на настоящие. Для человека вне IT это выглядит как чудо. Но на самом деле нейронные сети хорошо объясняются математически, хотя результат их работы действительно невозможно предсказать.

Нейросети используются в огромном количестве сфер, в первую очередь в тех, где от машины нужна функциональность сродни человеческой. То есть в ситуациях, где нет четко заданного скрипта, описывающего каждый конкретный случай; входные данные могут быть любыми, поэтому нужно уметь обрабатывать все возможные варианты. Хороший пример — робот-ассистент или подсказки в поле поиска. В свое время именно поисковые системы дали толчок развитию методов искусственного интеллекта. Пока с нейронными сетями работают в основном большие компании и холдинги. Для того чтобы создать нейросеть, способную достаточно грамотно работать в сложных условиях, нужны мощные машины и большие наборы обучающих данных. Такие ресурсы могут себе позволить только крупные корпорации. Еще есть стартапы — они в основном работают на арендованных мощностях и концентрируются на создании нейросети под конкретные задачи. Пример — знаменитое приложение Prisma. Отрасль может быть любой. Во всех сферах есть задачи, которые в силах решить нейросеть. Рассмотрим основные области задач, для решения которых используются нейросети. Классификация. Нейросеть получает объект и относит его к определенному классу. Самая первая сеть, перцептрон, решала именно задачи классификации, но очень простые. Сейчас возможности шире: сети могут классифицировать клиентов и выделять аудитории по интересам — вы сталкиваетесь с этой возможностью каждый день, когда ваш электронный почтовый ящик определяет (классифицирует) некоторые письма как спам. Но это не единственный пример: автоматический скоринг в банках, контекстная реклама — это все касается классификации. Распознавание. Задача поставлена иначе: она не в том, чтобы отнести объект к одному из классов, а в том, чтобы найти нужное среди множества данных — например, лицо на картинке. «Умные» фильтры для фотографий работают именно так. Можно вспомнить многочисленные нейросети, которые превращают фотографии в картины маслом или постеры, — они тоже сначала распознают, что находится на изображении. Распознавать можно и текстовые данные, например приложения для определения названия музыкальных треков. Но распознавание — это не только приложения. Это и поиск по картинке, и чтение текста с изображения, и работа «умных» камер слежения. Разнообразные программы для людей с ограниченными возможностями тоже используют возможности распознавания. Сюда же относятся голосовые ассистенты, которые распознают речь. Сейчас нейросети начинают активно применяться в медицине, например распознают информацию на снимках, что облегчает диагностику. Прогнозирование. Третий вариант — нейросети, которые получают входные данные и на их основе что-то предсказывают. Их часто применяют в аналитике, например в финансовом секторе такая сеть может предсказывать поведение рынка, а в маркетинге — тренды и аудитории. Нейросетевые программы, которые дописывают текст или дорисовывают изображение, тоже по сути занимаются прогнозированием. Так же работают поисковые системы: вы начинаете вводить фразу, а вам предлагают ее завершение. Это тоже задача прогнозирования, причем интересная — с учетом смысла предыдущих слов. Генерация. Нейронные сети могут сами генерировать контент. Пока он далек от идеального, но программы становятся умнее. Сейчас нейросети могут писать музыку, создавать изображения, и со временем они становятся все больше похожими на настоящие. Это комплексная задача, которая может состоять из нескольких предыдущих. Например, «дорисовка» человека на фотографии — задача распознавания и прогнозирования одновременно. Генерация текста в определенном стиле — классификация плюс прогнозирование.

Существует три основных проблемы работы с сетями — это явления забывчивости и переобучения, а также непредсказуемость. В биологических нейронных сетях они тоже есть, но мы их корректируем. В искусственных нейросетях аналогично применяются методы корректировки, но это сложнее и не всегда может быть эффективно. Забывчивость. Представьте, что вы попали сразу в несколько незнакомых ситуаций, опыта для которых ранее не было. Скорее всего, вам будет тяжело эффективно работать. Даже простые, но отличающиеся действия будут вызывать стресс, вы будете допускать больше ошибок. В теории нейронных сетей это называется забывчивостью: программы плохо реагируют на большое разнообразие ситуаций. Если обстоятельства все время меняются, нейросеть будет пытаться подстроиться под каждое из них, и в результате точность решений упадет. Но если человек еще может сориентироваться в незнакомой обстановке, то программе это сделать сложнее, ведь она — «вещь в себе», лишенная нейропластичности. Переобучение. Это явление, когда модель хорошо объясняет только примеры из обучающей выборки, адаптируясь к примерам оттуда, вместо того, чтобы учиться классифицировать что-то другое, не участвующее в обучении. Если вы когда-нибудь смотрели на автомобиль и видели, что фары похожи на глаза, а решетка радиатора — на рот, вы понимаете, как это работает. Нейросеть точно так же начинает путаться. Но ресурсов человеческого мозга хватает, чтобы понять, что машина — не настоящее лицо. Программа понять это не может и в подобной ситуации способна действительно выдать результат, что на картинке изображен человек. Еще один пример переобучения можно привести для сетей, которые создают что-то новое, например стиль. Вы, наверное, замечали, что у реальных художников и писателей есть свои характерные приемы, а их произведения со временем становятся все более похожими друг на друга. Это тоже пример переобучения — и генерирующие контент нейросети также ему подвержены. Непредсказуемость. Это прямое следствие закрытости и автономности нейронов. Сложно предугадать результат работы нейросети, будет ли она корректно работать в решении той или иной задачи. И если с предыдущими ошибками можно бороться благодаря правильным алгоритмам обучения, то непредсказуемость не пропадает. Это не стандартная программа, которая выдает известный результат для каждой ситуации. С непредсказуемостью тоже борются: точность можно повысить, если использовать подходящую архитектуру. Не обязательно более сложную — с некоторыми задачами хорошо справляются, наоборот, более простые сети. Но это дополнительно усложняет работу над нейросетями, особенно когда результат работы критичен.

Не совсем. Нейронные сети относят к глубокому обучению (Deep Learning), которое является частью машинного, но от классического ML подход сильно отличается. В стандартном машинном обучении программе предварительно рассказывают, как выглядит то, что она должна сделать. Например, если нужно отличить мужчину от женщины, потребуется «объяснить» модели, в чем принципиальные различия между фигурами. Это делается с помощью математических формул и абстракций, которые будут описывать параметры. Выше мы говорили про понятие карты признаков — по сути, это она и есть. При обучении нейросети такой задачи не стоит. Признаки сеть находит сама, их не нужно описывать. Необходимо только задать коэффициенты и результаты, соответствующие каждому возможному исходу. Это и хорошо, и плохо. Плохо — потому что приводит к уже описанной выше непредсказуемости. Хорошо — потому что дает больше гибкости: два необученных исходника одной и той же сети можно обучить на выполнение двух разных задач. Не понадобится писать другой алгоритм и задавать новые параметры. Можно оставить ту же архитектуру, главное — чтобы она изначально была оптимальной для этого типа задач.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь