Как происходит процесс обучения нейросети

0
20

Алгоритмы обучения нейронных сетей

Виды обучения нейронных сетей

Обучение нейронной сети — это процесс, в ходе которого модель искусственного интеллекта (в данном случае нейронная сеть) учится выполнять определенные задачи на основе предоставленных ей данных. Это может быть, например, распознавание образов или предсказание тенденций.

    Данные
    Одним общим словом называют все, что требуется для обучения и дальнейшей работы. Необходимые типы данных зависят от будущих задач. Разработчики могут загрузить словари иностранных языков и примеры переводов, статистику и описание произошедших фактов, изображения и т.д. Информация накапливается годами и собирается в датасеты

В эпоху информационных технологий и научных открытий для решения сложных задач все чаще применяется искусственный интеллект. Среди множества его инструментов и методов особое место занимают нейронные сети — интеллектуальные роботы, имитирующие работу человеческого мозга. Однако для того чтобы нейросети смогли решать сложные задачи, их сначала необходимо обучить.

Искусственный интеллект в бизнесе используют для разных задач. У этой технологии нет жестких ограничений, поэтому разработчики могут реализовать любую функциональность. Главное — организовать процессы обучения и контроля результатов. В 2024 году ИИ внедряют в промышленность, банковскую сферу, компьютерные игры, образование, медицину и т.д.

При погружении в мир нейронных систем мы обнаруживаем, что существует множество архитектур, отражающих их разнообразие и способности. Выделяются два ключевых типа: простые и глубокие нейросети. Оба вида имеют свои преимущества и ограничения. Чтобы получить хороший результат, важно научиться находить баланс между ними.

Нейронные сети — это подмножество машинного обучения, которое использует архитектуру, вдохновленную биологическими нейросетями. Это означает, что они состоят из слоев «нейронов», которые передают и преобразуют информацию. Они хорошо подходят для обработки сложных данных (изображения, звук).

Самостоятельное обучение

Обучение нейронной сети строится на угадывании и поиске корреляций. ИИ старается решить задачу и получает ответы от человека или отдельного алгоритма, контролирующего верность ответов. Со временем искусственный интеллект становится эффективнее, поскольку формирует связи внутри своей структуры.

Машинное обучение и нейронные сети связаны между собой, однако это все же разные области искусственного интеллекта. В первом случае речь идет о широком термине, который означает использование алгоритмов для анализа данных, обучения на их основе и прогнозирования или принятия решений. Здесь могут использоваться разные способы: статистические методы, деревья решений и т. д.

ЧИТАТЬ ТАКЖЕ:  Как продолжить песню нейросетью

Специфика нейронных сетей заключается в том, что они используются для решения интеллектуальных и сложных задач, для которых нет единственно верного ответа. Из-за этого программист не может просто заложить определенный механизм действий. Вместо этого ИИ-разработчики занялись обучением нейронной сети, во время которого компьютер получает данные (обработанные или нет) и на их основе пытается решить поставленную задачу.

Стоит отметить, что обучение нейронной сети должно осуществляться постоянно, а не только при создании ИИ и добавлении новых функций. В ходе работы искусственный интеллект продолжает настраиваться, но уже без контроля AI-тренера, из-за чего через какое-то время может снизиться качество ответов. К примеру, ChatGPT ненадолго «разучился» определять простые числа.

Есть множество методов «тренировки» нейронных сетей, но все они основываются на двух ключевых принципах: с помощью учителя и без него. Это происходит точно так же, как и у человека: можно приобретать новые знания под руководством наставника, который подскажет и скорректирует отдельные моменты, а можно заниматься самообразованием. В последнем случае человек опирается только на свой личный опыт и наблюдения.

После разработки нейросети нельзя сразу вводить в эксплуатацию. Необходимо провести обучение нейронной сети, в рамках которого она получит достаточно входных данных и опыта для выполнения определенных задач. Хотя модели искусственного интеллекта часто сравнивают с человеческим мозгом, принципы и способы машинного обучения существенно отличаются.

У моделей искусственного интеллекта сложна архитектура, которая состоит из множества элементов, настраивающихся в автоматическом режиме. Есть разные подходы, как обучить ИИ выполнять определенную задачу. Один из вариантов — предоставить обработанные данные (например, чертежи с прописанными площадями), а затем дать нейросети задачу самому указать площади в «сырых» чертежах.

Обучение с учителем (Supervised Learning) — это наиболее распространенный подход, при котором нейросеть обучается на основе предварительно размеченных данных. Эти данные включают в себя входные значения и соответствующие им целевые (ответы). Нейросеть обучается предсказывать последние на основе входных данных.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь