Содержание статьи
Искусственный интеллект: краткая история, развитие, перспективы
История взлетов и падений
Некоторые ученые отмечают риски внедрения ИИ в повседневную жизнь. Так, британский ученый Стивен Хокинг считал, что создать ИИ, превосходящий человека по всем параметрам, все же удастся, но справиться с ним будет нам не под силу, и людям будет нанесен существенный вред. Илон Маск же считает, что искусственный разум в дальнейшем будет нести куда большую угрозу по сравнении с ядерным оружием.
В 1965 году специалист Массачусетского технологического университета Джозеф Вайценбаум разработал программу «Элиза», которая ныне считается прообразом современной Siri. В 1973 году была изобретена «Стэндфордская тележка», первый беспилотный автомобиль, контролируемый компьютером. К концу 1970-х интерес к ИИ начал спадать.
Современные компьютеры приобретают все больше знаний и «умений». Скептики же утверждают, что все возможности ИИ – не более чем компьютерная программа, а не пример самообучения. Однако это не мешает технологии широко распространяться в самых различных сферах и открывать невиданные ранее потенциалы для развития. Со временем компьютеры будут становиться все мощнее, а ИИ еще быстрее совершенствоваться в своем развитии.
Помимо общих умственных способностей к рассуждению, обучению и решению проблем, человеческое мышление также имеет эмоциональную окраску и сильно зависит от влияния социума. Искусственный интеллект не имеет никакого эмоционального характера и не ориентирован социально.
ИИ также внедряют в производственные процессы для фиксации действий работников. Не обошлось и без внедрения новых технологических решений в транспортной сфере. Так, искусственный интеллект мониторит состояние на дорогах, фиксирует пробки, обнаруживает разные объекты в неположенных местах. А про автономное (беспилотное) вождение и так постоянно говорят…
Однако популярность термина «искусственный интеллект» во многом объясняется его ошибочным толкованием – в частности, когда им обозначают некую искусственную сущность, наделенную разумом, которая якобы в состоянии конкурировать с людьми. Эта мысль из области древних легенд и преданий, звучащая как миф о Големе, с недавних пор реанимируется такими нашими современниками, как британский физик Стивен Хокинг (1942-2018 гг.), американский предприниматель Илон Маск и американский инженер Рэй Курцвейл, а также сторонниками создания так называемого сильного или общего ИИ. Не будем, впрочем, говорить о данном понимании этого термина, ибо оно скорее представляет собой появившийся под влиянием научной фантастики продукт богатого воображения, а не осязаемую научную реальность, подтвержденную опытами и эмпирическими наблюдениями.
Нейросети представляют собой математическую модель, компьютерный алгоритм, работа которого основана на множестве искусственных нейронов. Суть этой системы в том, что ее не нужно заранее программировать. Она моделирует работу нейронов человеческого мозга, проводит элементарные вычисления и обучается на основании предыдущего опыта, но это не соотносимо с ИИ.
Если говорить об IQ – большинство ученых склонны считать, что сей параметр оценки никак не связан с искусственным интеллектом. С одной стороны, это действительно так, ведь стандартные IQ-тесты направлены на измерение «качества» человеческого мышления и связаны с развитием интеллекта на разных возрастных этапах.
Перспективы развития искусственного интеллекта
Такие интеллектуальные системы стали применяться для выполнения самых различных задач (идентификация отпечатков пальцев, распознавание речи и т. д.), а комбинации различных методов из области ИИ, информатики, искусственной жизни и других дисциплин использовались для создания гибридных систем.
Под машинным обучением понимают использование различных технологий для самообучающихся программ. Соответственно, это одно из многочисленных направлений ИИ. Системы, основанные на машинном обучении, получают базовые данные, анализируют их, затем на основе полученных выводов находят закономерности в сложных задачах со множеством параметров и дают точные ответы. Один из наиболее распространенных вариантов организации машинного обучения – применение нейросетей.
Новое развитие искусственный интеллект получил в середине 1990-х. Самый известный пример – суперкомпьютер IBM Deep Blue, который в 1997 году обыграл в шахматы чемпиона мира Гарри Каспарова. Сегодня подобные сети развиваются очень быстро за счет цифровизации информации, увеличения ее оборота и объема. Машины довольно быстро анализируют информацию и обучаются, впоследствии они действительно приобретают способности, ранее считавшиеся чисто человеческой прерогативой.
ИИ подразумевает не только рациональный анализ и воспроизведение при помощи компьютеров большинства аспектов интеллекта – может быть, лишь за исключением юмора. Машины значительно превышают наши когнитивные способности в большинстве областей, что заставляет нас опасаться некоторых этических рисков. Это риски трех видов: дефицит работы, которая вместо людей будет выполняться машинами; последствия для независимости человека и, в частности, для его свободы и безопасности; опасения, что более «умные» машины будут доминировать над людьми и станут причиной гибели человечества.
Перечислить разом все области, в которых задействован искусственный интеллект, практически нереально. На данный момент он затрагивает все больше самых разных сфер. И причин на то немало – та же автоматизация производственных процессов, стремительный рост информационного оборота и инвестиций в эту сферу, даже социальное давление.
Исследования не прекратились, но пошли в новых направлениях. Ученые заинтересовались психологией памяти, механизмами понимания, которые они пытались имитировать на компьютере, и ролью знаний в мыслительном процессе. Это привело к появлению значительно развившихся в середине 1970-х годов методов семантического представления знаний, а также к созданию экспертных систем, названных так потому, что для воспроизведения мыслительных процессов в них использовались знания квалифицированных специалистов. В начале 1980-х годов на экспертные системы возлагались большие надежды в связи с широкими возможностями их применения, например, для медицинской диагностики.
Его развитием занимается направление науки, в рамках которого происходит аппаратное или программное моделирование тех задач человеческой деятельности, что считаются интеллектуальными. Еще под ИИ часто подразумевают направление в IT, основной целью которого является воссоздание разумных действий и рассуждений с помощью компьютерных систем.
Ученые также прибегают к этим методам для определения функций биологических макромолекул, в частности белков и геномов, исходя из последовательности их компонентов – аминокислот для белков и оснований для геномов. В целом, во всех науках наблюдается серьезный эпистемологический разрыв, обусловленный качественным отличием экспериментов in silico – получивших такое название потому, что выполняются на основе больших данных с помощью мощных процессоров с кремниевыми чипами – от экспериментов in vivo (на живой ткани) и особенно in vitro (в стеклянных пробирках и чашках Петри).