Содержание статьи
Как сделать свою нейросеть за 10 минут на Python
Формула корректировки весов
Допустим, передадим ей значение 1.1.0. Как вы помните, во входных тренировочных данных такого значения у нас не было. В коде задействовать нашу уже обученную нейросеть можно также очень просто. Запускаем получившийся код и видим результат. Наша нейронная сеть прекрасно справилась и поняла, что очень большая вероятность того, что на выходе должна быть цифра 1. И то, что мы сейчас с вами запрограммировали, это простейшая нейронная сеть, которая называется Перцептрон. Но даже с такой простой нейронкой уже можно решить решать какие-то более-менее реальные задачи.
И позже я об этом еще покажу и расскажу в коде. Сам подход к обучению нейросети, то есть подразумевает старт с непрозрачностью, правильной позиции в поисках правильной. При этом довольно важен тот факт, что начальные веса не могут быть полностью одинаковыми, иначе они так одинаковыми в процессе обучения и останутся. Ну а раз мы все равно не знаем, какие должны быть веса, и нельзя делать их одинаковыми, то идея взять случайные веса в общем случае выглядит очень даже хорошо. И как я уже ранее сказал, именно благодаря весам нейрон будет определять результат.
В учебных целях очень часто применяют самую простейшую из них, линейную. Ее еще называют единичный скачок или жесткая пороговая функция. Выглядит в коде она следующим образом. Мы же будем применять более адекватную и подходящую функцию активатора, а именно сигмоид.
Конечно, после сигмоида мы никогда не получим такие значения, но и результат после обучения нашей нейронки сложно назвать хоть чем-то хотя бы близко похожим на то, что нам нужно. И происходит это потому, что метод обратного распространения подразумевает многократное обучение нейронной сети. В коде которого будет производиться регулирование в соответствии с уже известными алгоритмами выравнивания весов.
Больше нейронов. В нашей тренировочной нейросети только один нейрон. Но если нейронов будет больше — каждый из них сможет по-своему реагировать на входные данные, соответственно, на следующие нейроны будут приходить данные с разных синапсов. Значит — больше вариативность, «подумать» и передать сигнал дальше может не один нейрон, а несколько. Можно менять и формулу передачи, и связи между нейронами — так получаются разные виды нейронных сетей.
Все, что сейчас произошло у вас в мозгу, мы называем мышлением. Мозг принял входные данные, увидел выходные, вычислил взаимосвязь и впоследствии научился контролировать как их распознавать? Причем уже без необходимости в повторном вычислении взаимосвязи входных и выходных данных. Ну а нам осталось только воспроизвести этот же процесс в коде, чем мы сейчас и займемся. Но сначала давайте наглядно увидим, как будет выглядеть наш перцептрон. У нас будут входные данные, будет сам нейрон, конечно же результат и синапсы. Как уже понятно, синапсы это некая связь между . входными данными и тем, что попадет в нейрон. Соответственно, у нас есть какие-то входные данные, это будут нолики и единицы, своего рода аналог true и false в булевом типе данных.
И теперь, когда мы понимаем общий принцип действия, давайте перейдем к написанию кода, чтобы более наглядно увидеть реализацию всего, что я только что рассказывал. Но сначала в Python нам нужно установить модуль numpy. Он нам понадобится для легкой и высокопроизводительной работы с многомерными массивами. В описании я оставлю ссылку на репозиторий numpy в PyPy. Устанавливается он, как и любой другой модуль в Python, без каких-либо проблем. Теперь в коде начнем с импорта numpy, а затем объявим функцию sigmoid для реализации нашей функции активатора. Уже здесь нам пригождается numpy.
Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.
Что такое нейросеть
А начнем из простого и распространенного примера. Допустим, у нас есть какая-то проблема, которую наша нейронка должна уметь решать. Во всех учебниках и уроках по нейронкам обычно можно встретить вот эту таблицу. Здесь вы видите набор входных и выходных данных. Можете попробовать поставить видео на паузу и вычислить самостоятельно связь между этими данными. Хотя здесь нет ничего сложного, я думаю, уже видно, что в выходном столбце оказываются значения из первого столбца входного массива. На данном этапе ваш мозг, при помощи своих нейронных связей, синапсов и кое-чего еще, уже смог решить данную проблему и научиться, как ее решать впоследствии.
Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.
Хауди-хо, друзья! Недавно вы просили меня рассказать, как создать свою собственную нейронную сеть с нуля. Поэтому сегодня мы с вами этим и займемся. Создадим простейшую нейронную сеть, а именно Перцептрон. И на самом деле это не так сложно, как может показаться на первый взгляд. Дело в том, что нейронные сети как таковые базируются на определенных алгоритмах и математических функциях. Здесь можно встретить сигмоиду, линейную регрессию и угродительность. Но как мы знаем, чтобы пользоваться формулами, не обязательно понимать, как они работают.
Человеческий мозг состоит из ста миллиардов клеток, которые называются нейронами. Они соединены между собой синапсами. Если через синапсы к нейрону придет достаточное количество нервных импульсов, этот нейрон сработает и передаст нервный импульс дальше. Этот процесс лежит в основе нашего мышления. Мы можем смоделировать это явление, создав нейронную сеть с помощью компьютера. Нам не нужно воссоздавать все сложные биологические процессы, которые происходят в человеческом мозге на молекулярном уровне, нам достаточно знать, что происходит на более высоких уровнях. Для этого мы используем математический инструмент — матрицы, которые представляют собой таблицы чисел. Чтобы сделать все как можно проще, мы смоделируем только один нейрон, к которому поступает входная информация из трех источников и есть только один выход. 3 входных и 1 выходной сигнал Наша задача — научить нейронную сеть решать задачу, которая изображена в ниже. Первые четыре примера будут нашим тренировочным набором. Получилось ли у вас увидеть закономерность? Что должно быть на месте вопросительного знака — 0 или 1?
Другие методы и формулы. Чтобы нейроны обучались, нужно задать формулу корректировки весов — мы говорили про это выше. Если нейронов много, то формулу нужно как-то распространить на все из них. Для этого используется метод градиентного спуска: рассчитывается градиент по весам, а потом от него делается шаг в меньшую сторону. Звучит сложно, но на самом деле для этого есть специальные формулы и функции.
Вторая переменная это Training Outputs. Она хранит в себе массив 1 на 4, и это наши ожидаемые выходные данные. Также не забываем транспонировать вторую переменную, чтобы ее содержание поменялось и было 4 на 1. Дальше нам надо инициализировать веса. Ранее я уже говорил, что мы будем это делать при помощи генератора случайных чисел. Чтобы и у вас, и у меня получались одинаковые случайные числа, давайте договоримся и укажем сид генератора в значении 1.
Иными словами, вес синопса не может быть меньше минус 1 и не может быть больше 1. На текущем этапе вам важно понимать то, что веса мы, грубо говоря, взяли с потолка. Это значит, что столь важные для нас веса синапса, выявляющие взаимосвязь между входными данными и результатом, сейчас непригодны к использованию. А значит, мы должны эту ситуацию как-то исправить. Я сейчас говорю о том, чтобы провести нашу нейронку через так называемый процесс обучения нейросети. Это позволит нам приблизить веса к более верным значениям, а значит, правильно выявлять взаимосвязь. В данное время существуется сразу несколько методов обучения нейросети. Например, это знаменитый метод обратного распространения, на английском Backpropagation. Еще есть метод упругого распространения, или же Resilient Propagation.
И, конечно же, не забудем про генетический алгоритм, или же Genetic Algorithm. Тем не менее, основу основ обучения всех нейронок сегодня составляет именно метод обратного распространения. Именно им мы сейчас и воспользуемся. В коде этот метод будет выглядеть следующим образом. Итак, мы помним, что верными решениями для нас являются значения 0110.