Содержание статьи
Как написать свою первую нейросеть на Python
Что такое нейросеть
Человеческий мозг состоит из ста миллиардов клеток, которые называются нейронами. Они соединены между собой синапсами. Если через синапсы к нейрону придет достаточное количество нервных импульсов, этот нейрон сработает и передаст нервный импульс дальше. Этот процесс лежит в основе нашего мышления. Мы можем смоделировать это явление, создав нейронную сеть с помощью компьютера. Нам не нужно воссоздавать все сложные биологические процессы, которые происходят в человеческом мозге на молекулярном уровне, нам достаточно знать, что происходит на более высоких уровнях. Для этого мы используем математический инструмент — матрицы, которые представляют собой таблицы чисел. Чтобы сделать все как можно проще, мы смоделируем только один нейрон, к которому поступает входная информация из трех источников и есть только один выход. 3 входных и 1 выходной сигнал Наша задача — научить нейронную сеть решать задачу, которая изображена в ниже. Первые четыре примера будут нашим тренировочным набором. Получилось ли у вас увидеть закономерность? Что должно быть на месте вопросительного знака — 0 или 1?
Таким образом наш нейрон сможет принимать любую сумму значений всех входящих сигналов и на выходе будет выдавать значение от 0 до 1. Это хорошо подходит для принятия бинарных решений, и мы условимся, что если число на выходе нейросети > 0.5, мы будем расценивать его как истину, иначе — как ложь.
Давайте внимательно посмотрим на него. Вышенаписанная формула — это не что иное, как определение умножения матрицы на вектор. И в самом деле, если мы возьмем матрицу W размера n на m и выполним ее умножение на X размерности m, то мы получим другое векторное значение n-размерности, то есть как раз то, что надо.
Один нейрон может превратить в одну точку входной вектор, но по условию мы желаем получить несколько точек, т. к. выходное Y способно иметь произвольную размерность, которая определяется лишь ситуацией (один выход для XOR, десять выходов, чтобы определить принадлежность к одному из десяти классов, и так далее). Каким же образом получить n точек? На деле все просто: для получения n выходных значений, надо задействовать не один нейрон, а n. В результате для каждого элемента выходного Y будет использовано n разных взвешенных сумм от X. В итоге мы придем к следующему соотношению:
Так часто происходит в реальных задачах, например, при распознавании предметов. Не у всех из них есть жесткие критерии: скажем, гипертрофированного мультяшного персонажа мы по-прежнему различаем как человека, хотя у него совсем другие пропорции. Нейронную сеть сложно научить похожему — но современные системы могут справиться и с этим.
Еще есть, например, метод обратного распространения ошибки — градиентный алгоритм для многослойных нейросетей. Сигналы ошибки, рассчитанные с помощью градиента, распространяются от выхода нейронной сети к входу, то есть идут не в прямом, а в обратном направлении.
Вот оно, обучение!
На выходе этой сети находятся мышцы, отвечающие за расширение или сужение зрачка, и приводят эти механизмы в действие в зависимости от сигнала, полученного из нейросети. И таких механизмов огромное количество в теле любого живого существа, обладающего нервной системой.
Только ленивый не слышал сегодня о существовании и разработке нейронных сетей и такой сфере, как машинное обучение. Для некоторых создание нейросети кажется чем-то очень запутанным, однако на самом деле они создаются не так уж и сложно. Как же их делают? Давайте попробуем самостоятельно создать нейросеть прямого распространения, которую еще называют многослойным перцептроном. В процессе работы будем использовать лишь циклы, массивы и условные операторы. Что означает этот набор данных? Только то, что нам подойдет любой язык программирования, поддерживающий вышеперечисленные возможности. Если же у языка есть библиотеки для векторных и матричных вычислений (вспоминаем NumPy в Python), то реализация с их помощью займет совсем немного времени. Но мы не ищем легких путей и воспользуемся C#, причем полученный код по своей сути будет почти аналогичным и для прочих языков программирования.
Все нейроны по сути одинаковы, и принимают решение о том, какой силы сигнал передать далее с помощью одного и того же алгоритма. Это алгоритм называется активационной функцией. На вход она получает сумму значений входных сигналов, а на выход передает значение выходного сигнала.
Больше мощностей. Нейронные сети работают с матрицами, так что если нейронов много, вычисления получаются очень ресурсоемкие. Известные нейросети вроде Midjourney или ChatGPT — это сложные и «тяжелые» системы, для их работы нужны сервера с мощным «железом». Так что написать собственный DALL-E на домашнем компьютере не получится. Но есть сервисы для аренды мощностей: ими как раз пользуются инженеры машинного обучения, чтобы создавать, обучать и тестировать модели.
Когда мы узнаем дельту последнего слоя, мы сможем найти дельты и всех предыдущих слоев. Чтобы это сделать, нужно будет лишь перемножить для текущего слоя транспонированную матрицу с дельтой, а потом перемножить результат с вектором производных функции активации предыдущего слоя:
Но нейронные сети — все же не человеческий мозг. Мозг сложнее, объемнее, в нем намного больше нейронов, чем в любой компьютерной нейросети. Поэтому чрезмерное обучение может сделать хуже. Например, переобученная нейросеть может начать распознавать предметы там, где их нет — так люди иногда видят лица в фарах машин и принимают пакеты за котов. А в случае с искусственной нейронной сетью такой эффект еще явнее и заметнее. Если же учить нейросеть на нескольких разнородных данных, скажем, сначала обучить считать числа, а потом — распознавать лица, она просто сломается и начнет работать непредсказуемо. Для таких задач нужны разные нейросети, разные структуры и связи.
То есть мы подаем на вход нейросети определенные данные, для которых мы знаем, каким должен быть результат. Далее мы сравниваем результат, который нам выдала нейросеть с ожидаемым результатом, вычисляем ошибку, и корректируем веса нейронов таким образом, чтобы эту ошибку минимизировать. И повторяем это действие большое количество раз для большого количества наборов входных и выходных данных, чтобы сеть поняла какие сигналы на каком нейроне ей важны больше, а какие меньше. Чем больше и разнообразнее будет набор данных для обучения, тем лучше нейросеть сможет обучиться и впоследствии давать правильный результат. Этот процесс называется обучением с учителем.
Здравствуйте. Меня зовут Андрей, я frontend-разработчик и я хочу поговорить с вами на такую тему как нейросети. Дело в том, что ML технологии все глубже проникают в нашу жизнь, и о нейросетях сказано и написано уже очень много, но когда я захотел разобраться в этом вопросе, я понял что в интернете есть множество гайдов о том как создать нейросеть и выглядят они примерно следующим образом:
Устройство нейрона
Пока что это абсолютно случайное значение, так как веса мы выбирали случайно. Но, предположим, что мы знаем ожидаемое значение для такого набора входных данных и наша сеть ошиблась. В таком случае нам нужно вычислить ошибку и изменить параметры весов, таким образом немного обучив нашу нейросеть.
Но полученный вектор представляет собой неактивированное состояние (промежуточное, невыходное) всех нейронов, а для того, чтобы нам получить выходное значение, нужно каждое неактивированное значение подать на вход вышеупомянутой функции активации. Итогом ее применения и станет выходное значение слоя.
Пусть у нас уже есть нейронная сеть, но ведь ее ответы являются случайными, то есть наша нейросеть не обучена. Сейчас она способна лишь по входному вектору input выдавать случайный ответ, но нам нужны ответы, которые удовлетворяют конкретной поставленной задаче. Дабы этого достичь, сеть надо обучить. Здесь потребуется база тренировочных примеров и множество пар X — Y, на которых и будет происходить обучение, причем с использованием известного алгоритма обратного распространения ошибки.
Но в таком случае, получается, что все нейроны любого слоя будут получать одинаковый сигнал, и отдавать одинаковое значение. Таким образом мы могли бы заменить всю нашу сеть на один нейрон. Чтобы устранить эту проблему, мы присвоим входу каждого нейрона определенный вес. Этот вес будет обозначать насколько важен для каждого конкретного нейрона сигнал, получаемый от другого нейрона. И тут мы подходим к самому интересному.
Дабы найти значение ошибки E, надо найти сумму квадратов разности векторных значений, которые были выданы нейронной сетью в виде ответа, а также вектора, который ожидается увидеть при обучении. Еще надо будет найти дельту каждого слоя и учесть, что для последнего слоя дельта будет равняться векторной разности фактического и ожидаемого результатов, покомпонентно умноженной на векторное значение производных последнего слоя:
Другие методы и формулы. Чтобы нейроны обучались, нужно задать формулу корректировки весов — мы говорили про это выше. Если нейронов много, то формулу нужно как-то распространить на все из них. Для этого используется метод градиентного спуска: рассчитывается градиент по весам, а потом от него делается шаг в меньшую сторону. Звучит сложно, но на самом деле для этого есть специальные формулы и функции.
В нашем глазу есть сенсоры, которые улавливают количество света попадающего через зрачок на заднюю поверхность глаза. Они преобразуют эту информацию в электрические импульсы и передают на прикрепленные к ним нервные окончания. Далее это сигнал проходит по всей нейронной сети, которая принимает решение о том, не опасно ли такое количество света для глаза, достаточно ли оно для того, чтобы четко распознавать визуальную информацию, и нужно ли, исходя из этих факторов, уменьшить или увеличить количество света.
Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.