Как обучить нейросеть на python

0
29

Как написать простую нейросеть на Python

Как устроены нейросети

Искусственные нейроны образуют различные слои, каждый слой выполняет определенную функцию. Внешний источник передает информацию в первый, входной слой. Полученные данные проходят через скрытые слои нейронов и обрабатываются. Выходной слой нейронов возвращает готовый результат работы сети.

Python является одним из самых популярных языков программирования для создания нейронных сетей, благодаря своей простоте и богатой экосистеме библиотек машинного обучения. В этой статье мы рассмотрим пошаговую инструкцию по созданию простой нейросети на Python, начиная с основных концепций нейронных сетей и заканчивая практическим созданием и обучением модели.

В процессе обучения нейронная сеть корректирует значения весов и смещений таким образом, чтобы минимизировать ошибку на выходе. Для этого используются различные методы оптимизации, такие как стохастический градиентный спуск, а также различные функции потерь, которые позволяют измерить ошибку на выходе нейронной сети.

Так часто происходит в реальных задачах, например, при распознавании предметов. Не у всех из них есть жесткие критерии: скажем, гипертрофированного мультяшного персонажа мы по-прежнему различаем как человека, хотя у него совсем другие пропорции. Нейронную сеть сложно научить похожему — но современные системы могут справиться и с этим.

Например, на вход поступает картинка. Чтобы нейросеть могла понять, что на ней изображено, она должна выделить разные элементы из картинки, распознать их и подумать, что означает сочетание этих элементов. Примерно так работает зрительная кора в головном мозге. Это несколько задач, их не смогут решить одинаковые нейроны. Поэтому нужно несколько слоев, где каждый делает что-то свое. Для распознавания часто используют так называемые сверточные нейросети. Они состоят из комбинации сверточных и субдискретизирующих слоев, каждый из которых решает свою задачу.

В последние годы нейронные сети стали одним из наиболее популярных методов для решения различных задач, таких как классификация изображений, прогнозирование временных рядов, обработка естественного языка, генерация контента и т.д. Они «умеют» извлекать признаки из данных и на основе этих признаков принимать решения, что делает их особенно полезными в сфере искусственного интеллекта.

Функции потерь и оптимизация

После выбора функции активации необходимо выбрать функцию потерь, которая будет измерять ошибку нейронной сети в процессе обучения. Функция потерь должна быть выбрана в зависимости от задачи, которую вы хотите решить. Например, для задачи классификации могут быть использованы функции потерь, такие как кросс-энтропия или среднеквадратичная ошибка.

Простая нейронная сеть на Python создана. В нашем примере разработана сеть, которая может распознавать цифры на изображениях. Вы можете добавлять или изменять слои нейронной сети, экспериментировать с гиперпараметрами, обучать ее на других наборах данных, чтобы улучшить производительность.

Лучше обучение. Искусственные нейронные сети обучаются примерно по тому же принципу, что живые существа. Когда человек часто повторяет одни и те же действия, он учится: ездить на велосипеде, рисовать или набирать текст. Это происходит, потому что веса между нейронами в мозгу меняются: нервные клетки наращивают новые связи, по-новому начинают воспринимать сигналы и правильнее их передают. Нейронная сеть тоже изменяет веса при обучении — чем оно объемнее, тем сильнее она «запомнит» какую-то закономерность.

Другие методы и формулы. Чтобы нейроны обучались, нужно задать формулу корректировки весов — мы говорили про это выше. Если нейронов много, то формулу нужно как-то распространить на все из них. Для этого используется метод градиентного спуска: рассчитывается градиент по весам, а потом от него делается шаг в меньшую сторону. Звучит сложно, но на самом деле для этого есть специальные формулы и функции.

Функция активации определяет, как нейрон будет реагировать на входные данные. Она может быть линейной или нелинейной, и ее выбор зависит от конкретной задачи, которую решает нейронная сеть. Эта функция помогает сети обучаться более сложным взаимодействиям между данными.

ЧИТАТЬ ТАКЖЕ:  Как начать создавать нейросети

Рекуррентные нейронные сети – это тип нейронных сетей, который используется для работы с последовательными данными, такими как звуковые сигналы или текстовые данные. Рекуррентные слои в этих нейронных сетях позволяют нейронной сети запоминать информацию из предыдущих шагов и использовать ее для принятия решения на текущем шаге. Это позволяет рекуррентным нейронным сетям работать с данными разной длины и предсказывать последующие значения в последовательности.

Процесс тренировки

Давайте поймем почему формула имеет такой вид. Сначала нам нужно учесть то, что мы хотим скорректировать вес пропорционально размеру ошибки. Далее ошибка умножается на значение, поданное на вход нейрона, что, в нашем случае, 0 или 1. Если на вход был подан 0, то вес не корректируется. И в конце выражение умножается на градиент сигмоиды. Разберемся в последнем шаге по порядку:

Когда нейронная сеть получает на вход некоторые данные, она проходит через несколько слоев, состоящих из нейронов. Каждый нейрон обрабатывает данные и выдает некоторый результат, который передается следующему слою нейронов. Чтобы нейронная сеть могла правильно работать, ей необходимо научиться извлекать признаки из данных, то есть определять, какие входные значения наиболее важны для принятия решения.

Еще есть, например, метод обратного распространения ошибки — градиентный алгоритм для многослойных нейросетей. Сигналы ошибки, рассчитанные с помощью градиента, распространяются от выхода нейронной сети к входу, то есть идут не в прямом, а в обратном направлении.

Кроме того, необходимо выбрать метод оптимизации для обучения нейронной сети. Оптимизатор используется для изменения весов нейронной сети в процессе обучения, чтобы минимизировать функцию потерь. Один из наиболее популярных оптимизаторов — это алгоритм стохастического градиентного спуска (SGD). Он обновляет веса нейронной сети в направлении, противоположном градиенту функции потерь.

Больше нейронов. В нашей тренировочной нейросети только один нейрон. Но если нейронов будет больше — каждый из них сможет по-своему реагировать на входные данные, соответственно, на следующие нейроны будут приходить данные с разных синапсов. Значит — больше вариативность, «подумать» и передать сигнал дальше может не один нейрон, а несколько. Можно менять и формулу передачи, и связи между нейронами — так получаются разные виды нейронных сетей.

Архитектура нейронных сетей описывает структуру нейронной сети и определяет, как она будет обрабатывать входные данные и выдавать выходные значения. Существует несколько типов архитектур нейронных сетей, каждый из которых предназначен для решения определенных задач.

Человеческий мозг состоит из ста миллиардов клеток, которые называются нейронами. Они соединены между собой синапсами. Если через синапсы к нейрону придет достаточное количество нервных импульсов, этот нейрон сработает и передаст нервный импульс дальше. Этот процесс лежит в основе нашего мышления. Мы можем смоделировать это явление, создав нейронную сеть с помощью компьютера. Нам не нужно воссоздавать все сложные биологические процессы, которые происходят в человеческом мозге на молекулярном уровне, нам достаточно знать, что происходит на более высоких уровнях. Для этого мы используем математический инструмент — матрицы, которые представляют собой таблицы чисел. Чтобы сделать все как можно проще, мы смоделируем только один нейрон, к которому поступает входная информация из трех источников и есть только один выход. 3 входных и 1 выходной сигнал Наша задача — научить нейронную сеть решать задачу, которая изображена в ниже. Первые четыре примера будут нашим тренировочным набором. Получилось ли у вас увидеть закономерность? Что должно быть на месте вопросительного знака — 0 или 1?

Отметим ключевые моменты по разработке нейросети. В первую очередь определите ее структуру: сколько слоев и нейронов будет содержаться в сети. Экспериментируйте с разными конфигурациями, чтобы найти оптимальное соотношение между точностью и производительностью.При обучение модели обращайте внимание на правильность набора данных для обучения и проверки. Не забывайте использовать переобучение модели.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь