Как обучить нейросеть на датасете

0
20

Обучение нейросети: методы и алгоритмы

Этапы обучения

Только что мы рассмотрели архитектуру базовой нейросети. Глубокие нейронные сети (сети глубокого обучения) обычно имеют много скрытых слоев, состоящих из миллионов связанных между собой искусственных нейронов. Количество связей одного нейрона с другими называют весом. Вес является положительным, если данный узел возбуждает другой, или отрицательным, если, наоборот, происходит подавление узла. Узлы с большим весом оказывают более сильное влияние на другие. Веса нейросети настраиваются в процессе обучения. Они определяют, какие данные будут учитываться при получении итогового результата, и какой вклад внесет тот или иной узел на выводы.

Алгоритм обратного распространения вносит решающий вклад в обучение глубоких нейросетей с несколькими слоями. Он позволяет эффективно оптимизировать веса узлов нейронной сети, в том числе в сложных архитектурах с большим количеством параметров. Помимо стандартного варианта такого алгоритма существуют его расширенные и продвинутые версии, способные адаптивно регулировать скорость обучения (например, Adam или RMSprop).

Еще одним подвидом ML является трансферное обучение. Оно подразумевает использование знаний, полученных при решении одной задачи, для повышения эффективности работы над другой задачей. Процесс включает предварительное обучение на большом массиве данных и последующую точную настройку под специфику новой целевой задачи. Трансферное обучение в некоторых случаях позволяет существенно сэкономить время и ресурсы. Особенно оно актуально для ситуаций, когда необходимые исходные данные слишком дороги или ограничены для получения.

Как видно из названия, в алгоритме используются приемы, характерные для поведения генов живых организмов. В начале процесса создается случайная популяция нейросетей, каждая из которых имеет случайно заданные параметры. Далее она подвергается естественному отбору, успешность которого определяется поставленной задачей (например, классификацией изображений).

Если первый этап еще можно сделать, не имея специального опыта и знаний, то остальные этапы — никак. Построение модели иногда требует особенных навыков, и как правило, очень мощное железо. А проанализировать качество модели может только тот, кто понимает метрики и умеет их применять.

Понятие машинного обучения неразрывно связано с нейросетями. Нейронная сеть является методом в области искусственного интеллекта, который учит компьютеры работать с данными так же, как человеческий мозг. Важно понимать, что нейросети — это не мыслящие объекты, наделенные сознанием. Это сложнейшая база данных с огромным количеством формул.

Проблемная ситуация

Для проверки эффективности обучения нейросети нужно предоставить ей данные из другой части той же выборки, по которой она училась. Если сеть не выдает устраивающих нас ответов, возможны несколько причин появления подобных ошибок. Во-первых, это недостаточный объем данных из окружающей среды. Во-вторых, возможно данные из окружающей среды были недетерминированы. Наконец, не исключен вариант некорректного определения тренировочных и тестовых датасетов.

ЧИТАТЬ ТАКЖЕ:  Как загрузить фото в нейросеть бесплатно

После первого этапа из популяции выбираются нейросети, успешнее всего справившиеся с задачей. Они используются для создания следующего поколения нейронных сетей. При этом применяются механизмы, аналогичные живой природе — скрещивание и мутации. Новое поколение снова принимается за решение задачи и цикл повторяется. Процесс идет до тех пор, пока не будет достигнут заданный критерий остановки (скажем, достижение определенной точности).

Машинное обучение (Machine Learning или сокращенно ML) — одно из самых сложных и перспективных направлений развития искусственного интеллекта (ИИ). Фактически оно представляет собой набор приемов, алгоритмов и методов, позволяющих ИИ учиться и решать задачи не в строгих рамках, заданных программой, а на базе постоянного совершенствования знаний и накопления опыта. Именно таким образом в течение жизни учимся и мы с вами.

У нейросетей другая логика работы. Им дают большой массив правильно решенных задач. В нашем примере — это, скажем, тысяча чертежей домов с уже прописанными площадями. После этого нейронной сети дают возможность самой решить подобную задачу. Она начинает угадывать, какой ответ от нее хотят получить. Отдельный алгоритм подсказывает ей, правильно она справилась с решением или нет. Со временем нейросеть учится угадывать все лучше и лучше, формирует некие связи внутри своей структуры, которые обеспечивают полезный результат.

Сервис должен помочь в автоматическом режиме с минимальными трудозатратами и знаниями бизнес пользователю натренировать нейронную сеть и выгрузить ее для использования в необходимой инфраструктуре (мобильное приложение, веб сервис, камера, IoT устройство и пр.) для разработчиков.

Для начала нужно объяснить, чем нейронная сеть отличается от обычного алгоритма. Алгоритм — это заранее прописанная последовательность действий, которую должен выполнить компьютер, дающая определенный предсказуемый результат. В качестве примера можно привести программу, которая рассчитывает площадь квартиры или дома по чертежу. В ней есть четкая пошаговая инструкция, какие величины перемножать, какие складывать и т. д. У такого алгоритма понятная и простая архитектура, в него можно свободно вносить изменения на любом этапе.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь