Содержание статьи
Что такое нейронная сеть
Чем машинное обучение отличается от нейросетей
Машинное обучение без учителя (unsupervised learning) — менее популярный формат развития навыков нейросетей . Из названия понятно, что оно предполагает самостоятельное совершенствование модели. Как это работает? На вход модели подаются неразмеченные данные и система без чьей-либо помощи ищет в них закономерности. Этот формат отличается от предыдущего тем, что модели заранее не известен «правильный ответ» и его нужно найти. Для поиска следует проанализировать все данные и обнаружить в них общие скрытые структуры или паттерны для будущей классификации, которую она проводит без явного руководства. Модель, натренированная таким образом, легко справится с задачей распределения тысяч статей по тематике в зависимости, например, от упоминаемых ключевых слов.
Традиционные методы машинного обучения требуют участия человека, чтобы программное обеспечение работало должным образом. Специалист по работе с данными вручную определяет набор соответствующих функций, которые должно анализировать программное обеспечение. Это ограничение делает создание и управление программным обеспечением утомительным и трудозатратным процессом.
Искусственные нейронные сети постоянно обучаются, используя корректирующие циклы обратной связи для улучшения своей прогностической аналитики. Проще говоря, речь идет о данных, протекающих от входного узла к выходному узлу по множеству различных путей в нейронной сети. Правильным является только один путь, который сопоставляет входной узел с правильным выходным узлом. Чтобы найти этот путь, нейронная сеть использует петлю обратной связи, которая работает следующим образом:
Машинное зрение — это способность компьютеров извлекать информацию и смысл из изображений и видео. С помощью нейронных сетей компьютеры могут различать и распознавать изображения так, как это делают люди. Машинное зрение применяется в нескольких областях, например:
При погружении в мир нейронных систем мы обнаруживаем, что существует множество архитектур, отражающих их разнообразие и способности. Выделяются два ключевых типа: простые и глубокие нейросети. Оба вида имеют свои преимущества и ограничения. Чтобы получить хороший результат, важно научиться находить баланс между ними.
Тренировочный набор данных для этого типа обучения важно разметить, то есть каждому примеру сопоставить результат, который модель должна получить. Для этого над входным датасетом следует предварительно поработать: учитель собирает его заранее, просматривает и размечает в понятном для обработки виде.
Машинное обучение и нейронные сети связаны между собой, однако это все же разные области искусственного интеллекта. В первом случае речь идет о широком термине, который означает использование алгоритмов для анализа данных, обучения на их основе и прогнозирования или принятия решений. Здесь могут использоваться разные способы: статистические методы, деревья решений и т. д.
Обучение с учителем (Supervised Learning) — это наиболее распространенный подход, при котором нейросеть обучается на основе предварительно размеченных данных. Эти данные включают в себя входные значения и соответствующие им целевые (ответы). Нейросеть обучается предсказывать последние на основе входных данных.
Обработка естественного языка
Скрытые слои получают входные данные от входного слоя или других скрытых слоев. Искусственные нейронные сети могут иметь большое количество скрытых слоев. Каждый скрытый слой анализирует выходные данные предыдущего слоя, обрабатывает их и передает на следующий слой.
Нейронные сети могут отслеживать действия пользователей для разработки персонализированных рекомендаций. Они также могут анализировать все действия пользователей и обнаруживать новые продукты или услуги, которые интересуют конкретного потребителя. Например, стартап из Филадельфии Curalate помогает брендам конвертировать сообщения в социальных сетях в продажи. Бренды используют службу интеллектуальной маркировки продуктов (IPT) Curalate для автоматизации сбора и обработки контента пользователей социальных сетей. IPT использует нейронные сети для автоматического поиска и рекомендации продуктов, соответствующих активности пользователя в социальных сетях. Потребителям не нужно рыться в онлайн-каталогах, чтобы найти конкретный продукт по изображению в социальных сетях. Вместо этого они могут использовать автоматическую маркировку Curalate, чтобы с легкостью приобрести продукт.
В эпоху информационных технологий и научных открытий для решения сложных задач все чаще применяется искусственный интеллект. Среди множества его инструментов и методов особое место занимают нейронные сети — интеллектуальные роботы, имитирующие работу человеческого мозга. Однако для того чтобы нейросети смогли решать сложные задачи, их сначала необходимо обучить.
Обучение нейронной сети — это процесс, в ходе которого модель искусственного интеллекта (в данном случае нейронная сеть) учится выполнять определенные задачи на основе предоставленных ей данных. Это может быть, например, распознавание образов или предсказание тенденций.
Обучение с подкреплением (reinforcement learning) используется в ситуациях, когда нужно обучить нейро сеть задаче с четкими результатами на выходе. Этот формат подготовки ИИ-моделей проходит через взаимодействие с окружающей средой и работает следующим образом: система получает на вход некоторые неразмеченные данные и обрабатывает их случайным образом, в ответ на что получает положительные или отрицательные отзывы, в зависимости от результатов работы. Для обучения с подкреплением не нужен полный контроль человека или заранее и полностью размеченный набор данных — важно сформулировать задачу и оценить те решения, которые предпримет система.
Обучение с учителем используется для нейросетей , которые в дальнейшем будут решать задачи классификации: получать на входной слой большой объем данных и разделять информацию по заданным категориям. Этот механизм лежит в основе разных функций: модель может в будущем специализироваться и на генерации текста или продолжении предложений (нейронная сеть LSTM), и на идентификации и классификации картинок (сверточная нейронная сеть CNN). Кроме того, обучение с учителем позволяет модели успешно работать с прогнозами: оценивать динамику спроса на товар и менять цену и другие количественные характеристики для максимизации выручки или строить прогноз на бирже.
В чем заключается важность нейронных сетей?
Нейронная сеть – это метод в искусственном интеллекте (ИИ), который учит компьютеры обрабатывать данные таким же способом, как и человеческий мозг. Это тип процесса машинного обучения, называемый глубоким обучением, который использует взаимосвязанные узлы или нейроны в слоистой структуре, напоминающей человеческий мозг. Он создает адаптивную систему, с помощью которой компьютеры учатся на своих ошибках и постоянно совершенствуются. Таким образом, искусственные нейронные сети пытаются решать сложные задачи, такие как резюмирование документов или распознавание лиц, с более высокой точностью.
Есть множество методов «тренировки» нейронных сетей, но все они основываются на двух ключевых принципах: с помощью учителя и без него. Это происходит точно так же, как и у человека: можно приобретать новые знания под руководством наставника, который подскажет и скорректирует отдельные моменты, а можно заниматься самообразованием. В последнем случае человек опирается только на свой личный опыт и наблюдения.
При этом обучение с подкреплением рассчитано не только на успешное прохождение игр. Нейросети , подготовленные к самостоятельной работе таким способом, могут в дальнейшем управлять транспортом в качестве автопилота или выступать техподдержкой, получая положительную обратную связь за каждый верно решенный запрос.
Обучать нейронные сети выполнению задач можно по-разному: процесс развития навыков возможен с учителем или без него, а также с подкреплением. Каждый формат предназначен для решения конкретных задач: классификации, прогнозирования, распознавания изображения и так далее. Как выбрать оптимальный формат и чем между ними разница?
Нейронные сети — это подмножество машинного обучения, которое использует архитектуру, вдохновленную биологическими нейросетями. Это означает, что они состоят из слоев «нейронов», которые передают и преобразуют информацию. Они хорошо подходят для обработки сложных данных (изображения, звук).
Нейросети , прошедшие обучение без учителя, не хуже предыдущих решают задачи кластеризации. Деление большого количества данных на группы способна совершить каждая обучающаяся модель, а далее с уже первично отсортированными сведениями могут работать люди или более тонко настроенные модели. Помимо задач группировки, нейронные сети умеют определять связи в данных. Этот механизм часто используется в маркетинге: анализируя историю покупок, искусственный интеллект предполагает, какие товары и услуги дополнительно предложить этому же человеку. Детектирование аномалий — еще одна профильная задача самостоятельного машинного обучения, решаемая автокодировщиком Autoencoder.