Содержание статьи
Как разработать искусственный интеллект: пошаговое руководство
Стадия 1. Разочарование
А ведь действительно, именно желание создать совершенный искусственный интеллект, будь то игровая модель или мобильная программа, сподвигла на путь программиста многих из нас. Проблема в том, что за тоннами учебного материала и суровой действительностью заказчиков, это самое желание было заменено простым стремлением к саморазвитию. Для тех, кто так и не приступил к исполнению детской мечты, далее краткий путеводитель по созданию настоящего искусственного разума.
Если вы только начинаете осваивать область AI и создаете простых ботов, стоит на листке бумаги разобрать все возможные алгоритмы игры «Крестики-нолики» с полем 3 на 3. Она подходит для обучения, поскольку имеет крайне мало возможных действий. Новичкам нужно выяснить:
Математика — этот тот научный плацдарм, на котором будет строиться ваше дальнейшее программирование. Без знания и понимания этой теории все задумки быстро разобьются о взаимодействие с человеком, ведь искусственный разум на самом деле не больше, чем набор формул.
Если надежды на создание собственного AI, который сможет приблизиться к уровню человека, не разбились о гору теоретической литературы, можно приступать к изучению языков. Есть 3 языка программирования, которые стали популярными в области искусственного разума:
Когда мы говорим о создании хотя бы простых ботов, глаза наполняются блеском, а в голове мелькают сотни идей, что он должен уметь делать. Однако, когда дело доходит до реализации, оказывается, что ключом к разгадке реальной модели поведения является математика. Да-да, искусственный интеллект куда сложнее написания прикладных программ — одних знаний о проектировании ПО вам не хватит.
Когда технологическая основа готова, а основные алгоритмы прописаны и вручную протестированы, начинается длительный период тренировки. Чтобы сделать самостоятельный и универсальный интеллект, необходимо углубляться в изучение теории, а также хрестоматийных пособий, например:
Когда у новичка появляется первая мысль о создании AI и программировании в целом, глаза наполняются блеском. Сразу скажем, что все наши преподаватели прошли этот этап. Однако он заканчивается на грустной ноте, потому что начинающий разработчик сталкивается с тысячами страниц скучной теории, без которой создать ИИ невозможно.
Этот язык программирования разработали для выполнения статистических вычислений и математического анализа, что делает R лучшим выбором для работы с ботми. У него большая коллекция библиотек для работы со статистикой (например, caret, mlr и другие), помогающих реализовать точные AI-модели. Хотя R сложнее Python, освоить данный язык не так трудно, как кажется. У него логичный синтаксис, в открытых источниках достаточно информации для изучения.
Стадия 4. Азарт
К слову, если вы всё-таки взялись за язык Python, то создать довольно простого бота можно, обратившись к этому подробному мануалу. Для других языков, таких как C++ или Java, вам также не составит труда найти пошаговые материалы. Почувствовав, что за созданием ИИ нет ничего сверхъестественного, вы сможете смело закрыть браузер и приступить к личным экспериментам.
Во время обучения рекомендуется регулярно заниматься проверкой промежуточных результатов. В зависимости от качества материала качество работы AI может не только расти, но и падать. К примеру, недавно ChatGPT «отупел» в ходе общения с человеком, из-за чего потерял возможность правильно определять тип числа.
Комплексную методику используют в крупных проектах, поскольку требуется широкая и неоднородная база данных. Обучающая часть используется для получения базовых навыков, тестовая — для оценки качества и работоспособности, валидационная — для настройки гиперпараметров
Теперь же, когда вы уже вполне ясно представляете, как ИИ создавать и чем при этом пользоваться, пора выводить свои знания на новый уровень. Во-первых, для этого потребуется изучение дисциплины, которое носит название «Машинное обучение». Во-вторых, необходимо научиться работать с соответствующими библиотеками выбранного языка программирования. Для рассматриваемого нами Python это Scikit-learn, NLTK, SciPy, PyBrain и Numpy. В-третьих, в развитии никуда не обойтись от функционального программирования. Ну и самое главное, вы теперь сможете читать литературу о ИИ с полным пониманием дела:
На этой неделе вы могли прочитать крайне мотивирующей кейс от ученика GeekBrains Валерия Турова, который изучил профессию «Программист Java», где он рассказал об одной из своих целей, которая привела в профессию — желанию познать принцип работы и научиться создавать самому игровых ботов.
К этой категории относят ботов в компьютерных играх, голосовых помощников и первые версии нейросетей. Особенность слабого AI — узкая специализация. Они не могут выйти за рамки скриптов и функций, которые были заложены разработчиком. Любая непредсказуемая ситуация поставит компьютер в тупик
Главный аспект создания искусственного интеллекта — разработка моделей и алгоритмов, которые способны самостоятельно обучаться с опорой на поступающие данные. ИИ постоянно находится в процессе совершенствования навыков и способностей, что позволяет сделать результаты работы лучше и подготовить систему к решению новых задач.
Далеко не все правильно понимают, что скрывается за термином «искусственный интеллект» или AI (Artificial Intelligence). В сети встречаются объяснения, что ИИ — компьютер или система, способная думать и принимать разумные решения. Это не совсем верно. Искусственный интеллект — это алгоритмы, способные решать сложные задачи, для которых требуется наличие человеческого интеллекта.