Как физически выглядит нейросеть

0
21

Как физически выглядит нейросеть

Современный этап: развитие глубокого обучения (Deep Learning)

Сверточные нейронные сети —вариант однонаправленных сетей, но в них заложено пять слоев: входной, свертывающий, объединяющий, подключенный и выходной. Такие сети частично имитируют зрительную кору головного мозга и используется для классификации объектов, распознавания изображений и естественного языка, а также для прогнозирования.

Но уже в 1982 году в так называемой сети Хопфилда удалось реализовать двустороннюю передачу информации между нейронами. Так появились нелинейные функции активации, которые обеспечивают сложные взаимосвязи между входными и выходными нейронами. На этом этапе все было готово для глубокого или глубинного обучения, также известного как. Но прошло еще более 10 лет, прежде чем концепция получила полноценное воплощение.

Нейросети сейчас в тренде и кажутся явлением исключительно нашего времени, как смартфоны или умная техника. Но на самом деле они появились еще в 1940-е годы и прошли путь от простого перцептрона до современного ИИ, способного справиться с любой задачей. Редакция ZOOM.CNews изучила историю и принцип работы нейросетей.

Например, Google Lens использует для идентификации изображений сверточную сеть из 27 слоев GoogleLeNet. Похожая сеть есть в сервисе распознавания текста Yandex Vision и в видеоувеличителе Transformer-OCR, который способен определять текст на изображениях.

Принцип работы перцептрона был прост: в него загружали определенный набор правил для распознавания информации, а затем показывали карточку, например, с буквой «А». Если устройство давало верный ответ, то переходили к следующей карточке, если же происходил сбой, то в правила вручную вносились коррективы, и обучение продолжалось.

Например, нейросеть должна распознать рукописные цифры от 0 до 9. Для этого сначала ей дают обучающие примеры, затем она переходит к самообучению. Сеть выдает предположение о том, какая цифра сейчас демонстрируется, затем анализирует этот вариант и вычисляет разницу между реальной цифрой и своей версией. Это значение используется для корректировки нейронов внутри сети до тех пор, пока распознавание не станет максимально точным.

Перцептроны — Это классические нейронные сети, изначально однослойные, позже многослойные. Сейчас используются в основном для вычислений. Сверточные нейронные сети — Это многослойные сети, которые состоят из чередующихся сверточных и субдискретизирующих слоев и предназначены специально для работы с изображениями. Рекуррентные нейронные сети Их особенность в возможности последовательно обрабатывать цепочки данных и «запоминать» предыдущую информацию. Поэтому их применяют для работы с изменяющимися сведениями или длинными цепочками данных, например рукописными текстами. Генеративные нейронные сети Предназначены для создания контента. Иногда используются генеративно-состязательные нейросети — связка из двух сетей, где одна создает контент, а другая оценивает его качество.

Это опять же свойство, взятое из человеческого мозга. Нейронные связи в нашей нервной системе укрепляются, когда мы что-то выучиваем, — в итоге мы помним и делаем это лучше. Так появляются знания и навыки. У искусственных нейронных сетей так же: просто вместо физического изменения нервной ткани здесь происходит изменение числовых значений.

Интересно то, что конкретные признаки, нужные для узнавания, неизвестны. Мы не можем точно сказать, почему понимаем, что кот — это кот, даже если он нарисован в необычном стиле и не похож на настоящего. У нейросетей так же. Разработчики до конца не знают, какие именно признаки «запомнила» нейросеть, — поэтому даже работающий и протестированный программный продукт может выдавать ошибки. Например, воспринимать человека с ободком в виде кошачьих ушек как кота.

Сети прямого распространенияеще называют однонаправленными. Сигнал в них передается от входного нейрона к выходному, а обратное движение в принципе невозможно. Сами по себе такие сети ограничены в функциях и потому редко используются, но на их основе создаются более сложные сверточные сети.

Однако в 1974 году независимо друг от друга Александр Галушкин и Пол Вербос описали метод обратного распространения ошибки. Он подразумевает, что сигнал об ошибке идет не от входов, а от выходов сети. Это позволяло решить задачу обучения многослойных сетей. К тому же теперь они могли совершать операцию «исключающее ИЛИ».

— На сегодняшний день школа МАИ — одна из самых сильных в этой сфере. Так получилось потому, что наша школа создана не из научных соображений, как в западной традиции, а из практики: российские учёные в первую очередь нацелены на практический результат. К сожалению, если взять статьи или исследовательские работы, которые выходят в этом направлении по всему миру, то, по моему мнению, реально приложить к практике можно только 5%. Наша российская школа отличается тем, что мы отбрасываем все варианты, которые красивы с научной точки зрения, но никогда не будут работать в жизни. Например, на одной конференции зарубежные коллеги представили нейросеть, которая аппроксимирует отрывную волну у сопла авиационного двигателя. Это здорово, но только реально такую сеть никогда не применят, потому что это единственный случай, в котором она работает. Нам же нужны универсальные решения, чтобы нейросеть рассчитывала комплекс задач и выдавала готовый результат, который можно использовать. И поэтому наш интерес в первую очередь в том, чтобы создать конечный продукт. И мы накопили такой ряд решений, которые действительно работают, хотя они, может быть, и не всегда красивы с научной точки зрения, — говорит Вадим Кондаратцев.

ЧИТАТЬ ТАКЖЕ:  Фотошоп с нейросетью как установить

Рекуррентные сети имеют обратную связь. То есть информация с выходного слоя может возвращаться обратно на входной. Причем это может происходить неоднократно – и каждый раз данные будут пополняться за счет предыдущих выходов. Потому рекуррентные нейросети могут ненадолго запоминать и дополнять информацию, то есть обладают кратковременной памятью.

Нейросеть, еще называемая искусственной нейронной сетью или ИНС, – это математическая модель, программа или устройство, построенные по принципу биологической сети нейронов. Другими словами – по тому же принципу, по которому работает человеческий мозг. В основе каждой нейросети – огромное количество простых процессоров, представляющих собой искусственные нейроны. И, хотя по отдельности каждый процессор очень простой в сравнении с привычными компьютерами, их общая сеть с управляемым взаимодействием позволяет решать сложные задачи.

В 1969 году вышла книга «Перцептроны» Марвина Минского и Сеймура Паперта, в которой устройства Розенблатта подвергались закономерной критике. Дело в том, что в перцептроне использовалась однослойная нейронная сеть, а потому он не мог выполнять логическую операцию XOR (исключающее ИЛИ). А также на данном этапе компьютеры не обладали достаточной вычислительной мощностью и не могли обработать большой объем данных, который требовался для обучения нейронных сетей.

Искусственная нейронная сеть — не модель человеческого мозга: даже самые мощные из существующих сетей не могут достигнуть таких мощностей и подобного количества нейронов. В человеческом мозгу огромное количество нервных клеток — десятки миллиардов. В искусственных нейросетях намного меньше нейронов. Для создания нейронной сети, по возможностям равной человеческому мозгу, сейчас нет мощностей.

Синапсы. Синапс — это связь между нейронами. У каждого синапса есть веса — числовые коэффициенты, от которых как раз и зависит поведение нейронной сети. В самом начале, при инициализации сети, эти коэффициенты расставляются случайным образом. Но в ходе обучения они меняются и подстраиваются так, чтобы сеть эффективнее решала задачу.

Где применяют нейросети и кто с ними работает

Нейронными сетями занимаются специалисты по машинному обучению. Они не пишут программы, основанные на алгоритмах: вместо этого они создают модель и обучают ее, а потом тестируют, насколько хорошо она работает. Есть отдельные компании, специализирующиеся на разработке нейросетей, а есть продуктовые отделы крупных IT-организаций, например Google.

При этом для всех процессов большее значение имеют даже не сами нейроны, а синапсы, то есть связь между ними. Каждый из синапсов имеет свой вес, выставленный в случайном порядке, и во время обработки данные, переданные синапсом с большим весом, становятся преобладающими.

Но по какой логике пересчитываются веса, понять можно. В ходе обучения нейросеть анализирует данные, а потом ей дают правильный ответ. Этот ответ для нее — числовое значение. Поэтому она подгоняет веса так, чтобы в своей работе сеть приближалась к эталонному значению. Мы подробнее расскажем об этом процессе ниже, когда поговорим про обучение.

— Физически информированные нейронные сети отличаются от других нейросетей тем, что в самой их структуре учитывается физическая модель реального мира. Благодаря этому предсказания таких сетей интерпретируемы и согласуются с физическими законами, — отмечает эксперт.

В МАИ в последнее время PINN успешно применяются в теоретической механике. Физически информированные нейронные сети помогают предсказывать разрушение твёрдых тел (вращающихся дисков, маховиков) при сверхкритических перегрузках — очень важной теме для всей аэрокосмической промышленности. Раньше такие задачи решались при помощи только сложнейшего и дорогостоящего суперкомпьютерного моделирования.

В составе актуальных нейросетей есть три слоя нейронов: входной, выходной и скрытый. Первый нейронов располагает только входными данными (например, вашим запросом в чат). На последующие слои уже попадает информация со всех предыдущих слоев. Затем с помощью функции активации удаляются все значения, которые выпадают из требуемого диапазона (не соответствуют вашему запросу). Наконец, на выходных нейронах появляется итоговый результат.

ОСТАВЬТЕ ОТВЕТ

Пожалуйста, введите ваш комментарий!
пожалуйста, введите ваше имя здесь