Содержание статьи
Искусственный интеллект: Что это такое, как он работает и почему он важен
Основы теории: Что такое искусственный интеллект?
Могут ли машины стать умнее, чем люди? Нет, считает Жан-Габриэль Ганасия: это всего лишь миф, навеянный научной фантастикой. В своей статье он напоминает об основных этапах развития этой отрасли науки, о достижениях современной техники и об этических вопросах, все больше требующих к себе внимания.
Тем не менее ИИ остается достаточно новой и сложной технологией. Чтобы полностью раскрыть ее потенциал, чтобы создавать и применять решения на основе ИИ, необходим высокий уровень квалификации. Для достижения успеха недостаточно просто нанять специалистов по изучению данных. Необходимо использовать правильные инструменты, процессы и стратегии управления.
ИИ подразумевает не только рациональный анализ и воспроизведение при помощи компьютеров большинства аспектов интеллекта – может быть, лишь за исключением юмора. Машины значительно превышают наши когнитивные способности в большинстве областей, что заставляет нас опасаться некоторых этических рисков. Это риски трех видов: дефицит работы, которая вместо людей будет выполняться машинами; последствия для независимости человека и, в частности, для его свободы и безопасности; опасения, что более «умные» машины будут доминировать над людьми и станут причиной гибели человечества.
Рассматривайте ее как дорожную карту для разумного использования ИИ по мере развития данной технологии. Система управления ИИ представляет собой структурированный способ управления рисками и возможностями, связанными с ИИ. Она включает в себя такие ключевые компоненты, как прозрачность, объясняемость и автономность, давая организациям четкие указания по использованию ИИ в соответствии с развивающимися нормативными актами (например, Законом ЕС об ИИ).
С конца 1990-х годов ИИ стали объединять с робототехникой и интерфейсом «человек – машина» с целью создания интеллектуальных агентов, предполагающих наличие чувств и эмоций. Это привело, среди прочего, к появлению нового исследовательского направления – аффективных (или эмоциональных) вычислений (affective computing), направленных на анализ реакций субъекта, ощущающего эмоции, и их воспроизведение на машине, и позволило усовершенствовать диалоговые системы (чат-боты).
Исследования не прекратились, но пошли в новых направлениях. Ученые заинтересовались психологией памяти, механизмами понимания, которые они пытались имитировать на компьютере, и ролью знаний в мыслительном процессе. Это привело к появлению значительно развившихся в середине 1970-х годов методов семантического представления знаний, а также к созданию экспертных систем, названных так потому, что для воспроизведения мыслительных процессов в них использовались знания квалифицированных специалистов. В начале 1980-х годов на экспертные системы возлагались большие надежды в связи с широкими возможностями их применения, например, для медицинской диагностики.
Для Джона Мак-Карти и Марвина Мински, как и для прочих организаторов летнего семинара в Дартмут-колледже, ИИ изначально представлял собой область науки, занимающейся компьютерным моделированием различных способностей интеллекта, идет ли речь об интеллекте человеческом, животном, растительном, социальном или филогенетическом. В основе этой научной дисциплины лежит предположение о том, что все когнитивные функции, как то обучение, мышление, расчет, восприятие, память, даже научное открытие или художественное творчество, могут быть описаны с точностью, дающей возможность запрограммировать компьютер на их воспроизведение. На протяжении более чем шестидесяти лет существования ИИ не появилось ничего, что позволило бы неоспоримо доказать либо опровергнуть гипотезу, которая продолжает оставаться открытой и побуждает ученых к новым изобретениям.
И наконец, в противоположность некоторым утверждениям, машины не несут в себе экзистенциального риска для человечества, поскольку их автономия носит лишь технический характер и в этом смысле не соответствует цепочкам материальной причинности, идущим от информации к принятию решений. Кроме того, машины не самостоятельны в моральном плане, и потому, даже если иногда они сбивают нас с толку и вводят в заблуждение своими действиями, они все же не обладают собственной волей и подчиняются тем целям, которые мы перед ними ставим.
Что такое глубокое обучение?
Например, при обучении на непроверенных данных искусственный интеллект может копировать негативные предрассудки о расе, религии, воспитании и других характеристиках человека. Такие случаи могут стать потенциально опасными, если искусственный интеллект будет использоваться в здравоохранении, подборе персонала, юриспруденции и других сферах, ориентированных на человека.
Методы машинного обучения позволяют одним автоматам распознавать устную речь и записывать ее подобно секретарям-машинисткам прошлых лет, а другим – точно идентифицировать лица или отпечатки пальцев среди десятков миллионов других и обрабатывать тексты, написанные на естественных языках. Благодаря этим же методам самостоятельно движутся автомобили, компьютеры лучше врачей-дерматологов диагностируют меланомы по фотографиям родинок, сделанных с помощью сотовых телефонов, роботы воюют вместо людей; а конвейеры на заводах все больше автоматизируются.
Поначалу, под влиянием первых успехов, исследователи позволяли себе несколько опрометчивые заявления, которые впоследствии неоднократно ставились им в упрек. Так, например, в 1958 году американец Герберт Саймон, позже ставший лауреатом Нобелевской премии по экономике, заявил, что если бы машины допускались к международным соревнованиям, то в ближайшие десять лет они стали бы чемпионами мира по шахматам.
Однако популярность термина «искусственный интеллект» во многом объясняется его ошибочным толкованием – в частности, когда им обозначают некую искусственную сущность, наделенную разумом, которая якобы в состоянии конкурировать с людьми. Эта мысль из области древних легенд и преданий, звучащая как миф о Големе, с недавних пор реанимируется такими нашими современниками, как британский физик Стивен Хокинг (1942-2018 гг.), американский предприниматель Илон Маск и американский инженер Рэй Курцвейл, а также сторонниками создания так называемого сильного или общего ИИ. Не будем, впрочем, говорить о данном понимании этого термина, ибо оно скорее представляет собой появившийся под влиянием научной фантастики продукт богатого воображения, а не осязаемую научную реальность, подтвержденную опытами и эмпирическими наблюдениями.
Если Вы впервые задействуете искусственный интеллект для создания приложений, рекомендуется начинать с малого. Создав относительно простой проект наподобие крестиков-ноликов, Вы освоите основы искусственного интеллекта. Учеба на практике является отличным способом развития любых навыков, и искусственный интеллект здесь не исключение. Успешно выполнив несколько небольших проектов, Вы поймете, что возможности искусственного интеллекта поистине безграничны.
Ученые также прибегают к этим методам для определения функций биологических макромолекул, в частности белков и геномов, исходя из последовательности их компонентов – аминокислот для белков и оснований для геномов. В целом, во всех науках наблюдается серьезный эпистемологический разрыв, обусловленный качественным отличием экспериментов in silico – получивших такое название потому, что выполняются на основе больших данных с помощью мощных процессоров с кремниевыми чипами – от экспериментов in vivo (на живой ткани) и особенно in vitro (в стеклянных пробирках и чашках Петри).
Как технология ИИ может помочь организациям
Анализируя и интерпретируя язык, NLP позволяет компьютерам извлекать полезную информацию, отвечать на вопросы и вести беседу. Например, виртуальные помощники вроде Alexa могут понимать и предоставлять информацию о температуре на улице, заголовках новостей или среднем весе косатки.
Хотя это не всегда очевидно, искусственный интеллект уже давно стал неотъемлемой частью повседневной жизни миллионов людей. Виртуальные помощники, такие как Siri и Alexa, являются яркими примерами того, как искусственный интеллект может поддерживать человека в самых разных сферах — хотя бы тем, что делает жизнь более удобной.
Разработчики применяют искусственный интеллект, чтобы эффективнее выполнять задачи, которые в ином случае пришлось бы делать вручную, взаимодействовать с заказчиками, выявлять закономерности и решать проблемы. Для начала работы с ИИ разработчикам потребуются математические знания и умение пользоваться алгоритмами.
Одним из примеров международного стандарта в области ИИ является ISO/IEC 23894, посвященный управлению рисками в системах ИИ. Целью данного стандарта является обеспечение того, чтобы алгоритмы и модели ИИ были понятны и могли быть проверены на предмет предвзятости и справедливости, что способствует укреплению доверия к системам ИИ.
ИИ дает возможность воспроизводить и улучшать то, как мы воспринимаем окружающий мир и реагируем на него. Это свойство ИИ лежит в основе инноваций. ИИ основан на различных технологиях машинного обучения, которые распознают шаблоны в данных и формируют прогнозы. Он создает прибавочную стоимость для бизнеса благодаря следующим возможностям
Для тех, кто не знаком с компьютерными науками, попытка разобраться в многочисленных аспектах искусственного интеллекта и их последствиях может оказаться непосильной задачей. Здесь мы расскажем, что такое искусственный интеллект, как он работает, в чем разница между машинным обучением, глубоким обучением, обработкой естественного языка и многим другим. Давайте приступим.